The hemodynamics and fluid mechanical forces in blood vessels have long been implicated in the deposition and growth of atherosclerotic plaque. Detailed information about the hemodynamics in vessels affected by significant plaque deposits can also provide insight into the mechanisms and likelihood of plaque weakening and rupture. In the current study, the governing equations are solved in their finite volume formulation in several patient-specific stenotic geometries. Of specific interest are the flow patterns and forces near ulcerations in the plaque. The flow patterns and forces in vessels with ulcerated plaques are compared with those in stenotic vessels without evidence of ulceration and to the hemodynamics in the same vessels as they likely appeared prior to ulceration. Hemodynamics “before” and “after” hemorrhage may suggest fluid mechanical and morphological factors of diagnostic and predictive value. Recirculation zones, vortex shedding, and secondary flows are captured by both laminar and turbulent solutions. The forces on vessel walls are shown to correlate with unstable plaque deposits. Performing before and after studies of vessels in long-term radiology studies may illuminate mechanisms of hemorrhage and other vessel remodeling.

1.
Wootton
,
D. M.
, and
Ku
,
D. N.
, 1999, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
1523-9829,
1
, pp.
299
329
.
2.
Naghavi
,
M.
,
Libby
,
P.
,
Falk
,
E.
,
Casscells
,
S. W.
,
Litovsky
,
S.
,
Rumberger
,
J.
,
Badimon
,
J. J.
,
Stefanadis
,
C.
,
Moreno
,
P.
,
Pasterkamp
,
G.
,
Fayad
,
Z.
,
Stone
,
P. H.
,
Waxman
,
S.
,
Raggi
,
P.
,
Madjid
,
M.
,
Zarrabi
,
A.
,
Burke
,
A.
,
Yuan
,
C.
,
Fitzgerald
,
J.
,
Suscivucj
,
D. S.
,
de Korte
,
C. L.
,
Aujawa
,
M.
,
Aurajsubeb
,
J.
,
Assnabb
,
G.
,
Becjer
,
C. R.
,
Chesebro
,
J. H.
,
Farb
,
A.
,
Galis
,
Z.
,
Jackson
,
C.
,
Jang
,
I. -K.
,
Jiebug
,
W. K.
,
Lodder
,
R. A.
,
March
,
K.
,
Demirovic
,
J.
,
Navab
,
M.
,
Priori
,
S. G.
,
Rekhter
,
D.
,
Bahr
,
R.
,
Grundy
,
S. M.
,
Mehran
,
R.
,
Colmbo
,
A.
,
Boerwinkle
,
E.
,
Ballantyn
,
C.
,
Insull
,
W.
,
Schwartz
,
R. S.
,
Vogel
,
R.
,
Serruys
,
P. W.
,
Hansson
,
G. K.
,
Faxon
,
D. P.
,
Kaul
,
S.
,
Drexler
,
H.
,
Greenland
,
P.
,
Muller
,
J. E.
,
Virmani
,
R.
,
Ridker
,
P. M.
,
Zipes
,
D. P.
,
Shah
,
P. K.
, and
Willerson
,
J. T.
, 2003, “
From Vulnerable Plaque to Vulnerable Patient: A Call for New Definitions and Risk Assessment Strategies: Part I
,”
Circulation
0009-7322,
108
, pp.
1664
1672
.
3.
Little
,
W. C.
,
Constantinescu
,
M.
,
Applegate
,
R. J.
,
Kutcher
,
M. A.
,
Burrows
,
M. T.
,
Kahl
,
F. R.
, and
Santamore
,
W. P.
, 1988, “
Can Coronary Angiography Predict the Site of a Subsequent Myocardial Infarction in Patients With Mild-to-Moderate Coronary Artery Disease?
,”
Circulation
0009-7322,
78
, pp.
1157
1166
.
4.
Imoto
,
K.
,
Hiro
,
T.
,
Fujii
,
T.
,
Murashige
,
A.
,
Fukumoto
,
Y.
,
Hashimoto
,
G.
,
Okamura
,
T.
,
Yamada
,
J.
,
Mori
,
K.
, and
Matsuzaki
,
M.
, 2005, “
Longitudinal Structural Determinants of Atherosclerotic Plaque Vulnerability
,”
J. Am. Coll. Cardiol.
0735-1097,
46
(
8
), pp.
1507
1515
.
5.
Ohayon
,
J.
,
Finet
,
G.
,
Gharib
,
A. M.
,
Herzka
,
D. A.
,
Tracqui
,
P.
,
Heroux
,
J.
,
Rioufol
,
G.
,
Kotys
,
M. S.
,
Elagha
,
A.
, and
Pettigrew
,
R. I.
, 2008, “
Necrotic Core Thickness and Positive Arterial Remodeling Index: Emergent Biomechanical Factors for Evaluating the Risk of Plaque Rupture
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
295
, pp.
H717
H727
.
6.
Virmani
,
R.
,
Kolodgie
,
F. D.
,
Burke
,
A. P.
,
Farb
,
A.
, and
Schwartz
,
S. M.
, 2000, “
Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
, pp.
1262
1275
.
7.
Lovett
,
J. K.
, and
Rothwell
,
P. M.
, 2003, “
Site of Carotid Plaque Ulceration in Relation to Direction of Blood Flow: An Angiographic and Pathological Study
,”
Cerebrovasc Dis.
1015-9770,
16
, pp.
369
375
.
8.
Groen
,
H. C.
,
Gijsen
,
F. J. H.
,
van der Lugt
,
A.
,
Ferguson
,
M.
,
Hatsukami
,
T. S.
,
van der Steen
,
A. F. W.
,
Yuan
,
C.
, and
Wentzel
,
J. J.
, 2007, “
Plaque Rupture in the Carotid Artery Is Located at the High Shear Stress Region
,”
Stroke
0039-2499,
38
, pp.
2379
2381
.
9.
Li
,
Z. Y.
,
Taviani
,
V.
,
Tang
,
T.
,
Sadat
,
U.
,
Young
,
V.
,
Patterson
,
A.
,
Graves
,
M.
, and
Gillard
,
J. H.
, 2009, “
The Mechanical Triggers of Plaque Rupture: Shear Stress vs. Pressure Gradient
,”
Br. J. Radiol.
0007-1285,
82
, pp.
S39
S45
.
10.
Tang
,
D.
,
Yang
,
C.
,
Zhang
,
J.
,
Woodward
,
P. K.
,
Saffitz
,
J. E.
,
Petruccelli
,
J. D.
,
Sicard
,
G. A.
, and
Yuan
,
C.
, 2005, “
Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1789
1801
.
11.
Tang
,
D.
,
Teng
,
D.
,
Canton
,
G.
,
Yang
,
C.
,
Ferguson
,
M.
,
Huang
,
X.
,
Zheng
,
J.
,
Woddard
,
P. K.
, and
Yuan
,
C.
, 2009, “
Sites of Rupture in Human Atherosclerotic Carotid Plaques are Associated With High Structural Stresses
,”
Stroke
0039-2499,
40
, pp.
3258
3263
.
12.
Fuster
,
V.
,
Badimon
,
L.
,
Badimon
,
J.
, and
Chesebro
,
J. H.
, 1992, “
The Pathogenesis of Coronary Artery Disease and the Acute Coronary Syndromes
,”
N. Engl. J. Med.
0028-4793,
326
, pp.
242
250
.
13.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
, 2000, “
Influence of Stenosis Morphology on Flow Through Severely Stenotic Vessels: Implications for Plaque Rupture
,”
J. Biomech.
0021-9290,
33
, pp.
443
455
.
14.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
, 2002, “
Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
9
20
.
15.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
, 1999, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
282
, pp.
2035
2042
.
16.
Banks
,
J.
, and
Bressloff
,
N. W.
, 2007, “
Turbulence Modeling in Three-Dimensional Stenosed Arterial Bifurcations
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
40
50
.
17.
Blackburn
,
H. M.
, and
Sherwin
,
S. J.
, 2007, “
Instability Modes and Transition of Pulsatile Stenotic Flow: Pulse-Period Dependence
,”
J. Fluid Mech.
0022-1120,
573
, pp.
57
88
.
18.
Loree
,
H. M.
,
Kamm
,
R. D.
,
Atkinson
,
C. M.
, and
Lee
,
R. T.
, 1991, “
Turbulent Pressure Fluctuations on Surface of Model Vascular Stenosis
,”
Am. J. Physiol.
0002-9513,
261
, pp.
H644
50
.
19.
Chorin
,
A.
, 1967, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
0021-9991,
2
, pp.
12
26
.
20.
Perktold
,
K.
,
Resch
,
M.
, and
Peter
,
R. O.
, 1991, “
Three-Dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation
,”
J. Biomech.
0021-9290,
24
, pp.
409
420
.
21.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
, 1982, “
Steady Flow in a Model of the Human Carotid Bifurcation: Part I Flow Visualization
,”
J. Biomech.
0021-9290,
15
, pp.
349
362
.
22.
Lee
,
S. -W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
, pp.
2341
2347
.
23.
Fung
,
Y. C.
, 1997,
Biomechanics: Circulation
, 2nd ed.,
Springer-Verlag
,
New York
.
24.
Versluis
,
A.
,
Bank
,
A. J.
, and
Douglas
,
W. H.
, 2006, “
Fatigue and Plaque Rupture in Myocardial Infarction
,”
J. Biomech.
0021-9290,
39
, pp.
339
347
.
25.
Tang
,
D.
,
Yang
,
C.
, and
Ku
,
D. N.
, 1999, “
A 3-D Thin-Wall Model With Fluid-Structure Interactions for Blood Flow in Carotid Arteries With Symmetric and Asymmetric Stenoses
,”
Comput. Struct.
0045-7949,
72
, pp.
357
377
.
26.
Leach
,
J. R.
,
Rayz
,
V. L.
,
Soares
,
B.
,
Wintermark
,
M.
,
Mofrad
,
M. R. K.
, and
Saloner
,
D.
, 2010, “
Carotid Atheroma Rupture Observed In Vivo and FSI-Predicted Stress Distribution Based on Pre-Rupture Imaging
,”
Ann. Biomed. Eng.
0090-6964,
38
, pp.
2748
2765
.
27.
Libby
,
P.
, 2002, “
Inflammation in Atherosclerosis
,”
Nature (London)
0028-0836,
420
, pp.
868
874
.
28.
van der Wal
,
A. C.
,
Becker
,
A. E.
,
van der Loos
,
C. M.
, and
Das
,
P. K.
, 1994, “
Site of Intimal Rupture or Erosion of Thrombosed Coronary Atherosclerotic Plaques Is Characterized by an Inflammatory Process Irrespective of the Dominant Plaque Morphology
,”
Circulation
0009-7322,
89
, pp.
36
44
.
29.
Fisher
,
M.
,
Paganini-Hill
,
A.
,
Martin
,
A.
,
Cosgrove
,
M.
,
Toole
,
J. F.
,
Barnett
,
H. J. M.
, and
Norris
,
J.
, 2005, “
Carotid Plaque Pathology: Thrombosis, Ulceration, and Stroke Pathogenesis
,”
Stroke
0039-2499,
36
, pp.
253
257
.
30.
Olufsen
,
M. S.
, 1999, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
276
, pp.
H257
H268
.
31.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
3776
3796
.
You do not currently have access to this content.