The canine nasal cavity contains a complex airway labyrinth, dedicated to respiratory air conditioning, filtering of inspired contaminants, and olfaction. The small and contorted anatomical structure of the nasal turbinates has, to date, precluded a proper study of nasal airflow in the dog. This study describes the development of a high-fidelity computational fluid dynamics (CFD) model of the canine nasal airway from a three-dimensional reconstruction of high-resolution magnetic resonance imaging scans of the canine anatomy. Unstructured hexahedral grids are generated, with large grid sizes ((10100)×106 computational cells) required to capture the details of the nasal airways. High-fidelity CFD solutions of the nasal airflow for steady inspiration and expiration are computed over a range of physiological airflow rates. A rigorous grid refinement study is performed, which also illustrates a methodology for verification of CFD calculations on complex unstructured grids in tortuous airways. In general, the qualitative characteristics of the computed solutions for the different grid resolutions are fairly well preserved. However, quantitative results such as the overall pressure drop and even the regional distribution of airflow in the nasal cavity are moderately grid dependent. These quantities tend to converge monotonically with grid refinement. Lastly, transient computations of canine sniffing were carried out as part of a time-step study, demonstrating that high temporal accuracy is achievable using small time steps consisting of 160 steps per sniff period. Here we demonstrate that acceptable numerical accuracy (between approximately 1% and 15%) is achievable with practical levels of grid resolution (100×106 computational cells). Given the popularity of CFD as a tool for studying flow in the upper airways of humans and animals, based on this work we recommend the necessity of a grid dependence study and quantification of numerical error when presenting CFD results in complicated airways.

1.
Paulsen
,
E.
, 1882, “
Experimentelle Untersuchungen Über Die Strömungen Der Luft in Der Nasenhöhle
,”
Sitzungsberichte der kaiserliche Academie der Wissenschaften, III Abteilung
,
85
, pp.
348
373
.
2.
Proetz
,
A. W.
, 1951, “
Air Currents in the Upper Respiratory Tract and Their Clinical Importance
,”
Ann. Otol. Rhinol. Laryngol.
0003-4894,
60
(
2
), pp.
439
467
.
3.
Proetz
,
A. W.
, 1953,
Applied Physiology of the Nose
,
Annals
,
St. Louis
.
4.
Swift
,
D. L.
, and
Proctor
,
D. F.
, 1977, “
Access of Air to the Respiratory Tract
,”
Respiratory Defense Mechanisms
,
Marcel Dekker
,
New York
, Chap. 3, pp.
63
93
.
5.
Hornung
,
D. E.
,
Leopold
,
D. A.
,
Youngentob
,
S. L.
,
Sheehe
,
P. R.
,
Gagne
,
G. M.
,
Thomas
,
F. D.
, and
Mozell
,
M. M.
, 1987, “
Airflow Patterns in a Human Nasal Model
,”
Arch. Otolaryngol. Head Neck Surg.
0886-4470,
113
(
2
), pp.
169
172
.
6.
Simmen
,
D.
,
Scherrer
,
J. L.
,
Moe
,
K.
, and
Heinz
,
B.
, 1999, “
A Dynamic and Direct Visualization Model for the Study of Nasal Airflow
,”
Arch. Otolaryngol. Head Neck Surg.
0886-4470,
125
(
9
), pp.
1015
1021
.
7.
Patra
,
A. L.
,
Gooya
,
A.
, and
Morgan
,
K. T.
, 1986, “
Air-Flow Characteristics in a Baboon Nasal Passage Cast
,”
J. Appl. Physiol.
8750-7587,
61
(
5
), pp.
1959
1966
.
8.
Morgan
,
K. T.
, and
Monticello
,
T. M.
, 1990, “
Air-Flow, Gas Deposition, and Lesion Distribution in the Nasal Passages
,”
Environ. Health Perspect.
0091-6765,
85
, pp.
209
218
.
9.
Morgan
,
K. T.
,
Kimbell
,
J. S.
,
Monticello
,
T. M.
,
Patra
,
A. L.
, and
Fleishman
,
A.
, 1991, “
Studies of Inspiratory Air-Flow Patterns in the Nasal Passages of the F344 Rat and Rhesus-Monkey Using Nasal Molds—Relevance to Formaldehyde Toxicity
,”
Toxicol. Appl. Pharmacol.
0041-008X,
110
(
2
), pp.
223
240
.
10.
Dawes
,
J. D. K.
, 1952, “
The Course of the Nasal Airstreams
,”
J. Laryngol. Otol.
0022-2151,
66
(
12
), pp.
583
593
.
11.
Becker
,
R. F.
, and
King
,
J. E.
, 1957, “
Delineation of the Nasal Air Streams in the Living Dog
,”
AMA Arch. Otolaryngol.
,
65
(
5
), pp.
428
436
. 0096-6894
12.
Hahn
,
I.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1993, “
Velocity Profiles Measured for Airflow Through a Large-Scale Model of the Human Nasal Cavity
,”
J. Appl. Physiol.
8750-7587,
75
(
5
), pp.
2273
2287
.
13.
Hopkins
,
L. M.
,
Kelly
,
J. T.
,
Wexler
,
A. S.
, and
Prasad
,
A. K.
, 2000, “
Particle Image Velocimetry Measurements in Complex Geometries
,”
Exp. Fluids
0723-4864,
29
(
1
), pp.
91
95
.
14.
Kelly
,
J. T.
,
Prasad
,
A. K.
, and
Wexler
,
A. S.
, 2000, “
Detailed Flow Patterns in the Nasal Cavity
,”
J. Appl. Physiol.
8750-7587,
89
(
1
), pp.
323
337
.
15.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
, 2003, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
0723-4864,
34
(
4
), pp.
494
503
.
16.
Taylor
,
C. A.
, and
Draney
,
M. T.
, 2004, “
Experimental and Computational Methods in Cardiovascular Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
197
231
.
17.
Marshall
,
I.
,
Zhao
,
S. Z.
,
Papathanasopoulou
,
P.
,
Hoskins
,
P.
, and
Xu
,
X. Y.
, 2004, “
MRI and CFD Studies of Pulsatile Flow in Healthy and Stenosed Carotid Bifurcation Models
,”
J. Biomech.
0021-9290,
37
(
5
), pp.
679
687
.
18.
Elkins
,
C. J.
, and
Alley
,
M. T.
, 2007, “
Magnetic Resonance Velocimetry: Applications of Magnetic Resonance Imaging in the Measurement of Fluid Motion
,”
Exp. Fluids
0723-4864,
43
(
6
), pp.
823
858
.
19.
Vennemann
,
P.
,
Lindken
,
R.
, and
Westerweel
,
J.
, 2007, “
In Vivo Whole-Field Blood Velocity Measurement Techniques
,”
Exp. Fluids
0723-4864,
42
(
4
), pp.
495
511
.
20.
Bonn
,
D.
,
Rodts
,
S.
,
Groenink
,
M.
,
Rafai
,
S.
,
Shahidzadeh-Bonn
,
N.
, and
Coussot
,
P.
, 2008, “
Some Applications of Magnetic Resonance Imaging in Fluid Mechanics: Complex Flows and Complex Fluids
,”
Annu. Rev. Fluid Mech.
0066-4189,
40
, pp.
209
233
.
21.
Lindemann
,
J.
,
Keck
,
T.
,
Wiesmiller
,
K.
,
Sander
,
L.
,
Brambs
,
H. J.
,
Rettinger
,
G.
, and
Pless
,
D.
, 2004, “
A Numerical Simulation of Intranasal Air Temperature During Inspiration
,”
Laryngoscope
0023-852X,
114
(
6
), pp.
1037
1041
.
22.
Pless
,
D.
,
Keck
,
T.
,
Wiesmiller
,
K.
,
Rettinger
,
G.
,
Aschoff
,
A. J.
,
Fleiter
,
T. R.
, and
Lindemann
,
J.
, 2004, “
Numerical Simulation of Air Temperature and Airflow Patterns in the Human Nose During Expiration
,”
Clin. Otolaryngol.
0307-7772,
29
(
6
), pp.
642
647
.
23.
Lindemann
,
J.
,
Keck
,
T.
,
Wiesmiller
,
K.
,
Sander
,
B.
,
Brambs
,
H. J.
,
Rettinger
,
G.
, and
Pless
,
D.
, 2006, “
Nasal Air Temperature and Airflow During Respiration in Numerical Simulation Based on Multislice Computed Tomography Scan
,”
Am. J. Rhinol.
1050-6586,
20
(
2
), pp.
219
223
.
24.
Kimbell
,
J. S.
,
Gross
,
E. A.
,
Joyner
,
D. R.
,
Godo
,
M. N.
, and
Morgan
,
K. T.
, 1993, “
Application of Computational Fluid Dynamics to Regional Dosimetery of Inhaled Chemicals in the Upper Respiratory Tract of the Rat
,”
Toxicol. Appl. Pharmacol.
0041-008X,
121
(
2
), pp.
253
263
.
25.
Kimbell
,
J. S.
,
Godo
,
M. N.
,
Gross
,
E. A.
,
Joyner
,
D. R.
,
Richardson
,
R. B.
, and
Morgan
,
K. T.
, 1997, “
Computer Simulation of Inspiratory Airflow in All Regions of the F344 Rat Nasal Passages
,”
Toxicol. Appl. Pharmacol.
0041-008X,
145
(
2
), pp.
388
398
.
26.
Kimbell
,
J. S.
,
Subramaniam
,
R. P.
,
Gross
,
E. A.
,
Schlosser
,
P. M.
, and
Morgan
,
K. T.
, 2001, “
Dosimetry Modeling of Inhaled Formaldehyde: Comparisons of Local Flux Predictions in the Rat, Monkey, and Human Nasal Passages
,”
Toxicol. Sci.
1096-6080,
64
(
1
), pp.
100
110
.
27.
Kepler
,
G. M.
,
Richardson
,
R. B.
,
Morgan
,
K. T.
, and
Kimbell
,
J. S.
, 1998, “
Computer Simulation of Inspiratory Nasal Airflow and Inhaled Gas Uptake in a Rhesus Monkey
,”
Toxicol. Appl. Pharmacol.
0041-008X,
150
(
1
), pp.
1
11
.
28.
Subramaniam
,
R. P.
,
Richardson
,
R. B.
,
Morgan
,
K. T.
,
Kimbell
,
J. S.
, and
Guilmette
,
R. A.
, 1998, “
Computational Fluid Dynamics Simulations of Inspiratory Airflow in the Human Nose and Nasopharynx
,”
Inhalation Toxicol.
0895-8378,
10
(
5
), pp.
473
502
.
29.
Minard
,
K. R.
,
Einstein
,
D. R.
,
Jacob
,
R. E.
,
Kabilan
,
S.
,
Kuprat
,
A. P.
,
Timchalk
,
C. A.
,
Trease
,
L. L.
, and
Corley
,
R. A.
, 2006, “
Application of Magnetic Resonance (MR) Imaging for the Development and Validation of Computational Fluid Dynamic (CFD) Models of the Rat Respiratory System
,”
Inhalation Toxicol.
0895-8378,
18
(
10
), pp.
787
794
.
30.
Keyhani
,
K.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1995, “
Numerical Simulation of Airflow in the Human Nasal Cavity
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
4
), pp.
429
441
.
31.
Keyhani
,
K.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 1997, “
A Numerical Model of Nasal Odorant Transport for the Analysis of Human Olfaction
,”
J. Theor. Biol.
0022-5193,
186
(
3
), pp.
279
301
.
32.
Zhao
,
K.
,
Scherer
,
P. W.
,
Hajiloo
,
S. A.
, and
Dalton
,
P.
, 2004, “
Effect of Anatomy on Human Nasal Air Flow and Odorant Transport Patterns: Implications for Olfaction
,”
Chem. Senses
0379-864X,
29
(
5
), pp.
365
379
.
33.
Zhao
,
K.
,
Dalton
,
P.
,
Yang
,
G. C.
, and
Scherer
,
P. W.
, 2006, “
Numerical Modeling of Turbulent and Laminar Airflow and Odorant Transport During Sniffing in the Human and Rat Nose
,”
Chem. Senses
0379-864X,
31
(
2
), pp.
107
118
.
34.
Yang
,
G. C.
,
Scherer
,
P. W.
,
Zhao
,
K.
, and
Mozell
,
M. M.
, 2007, “
Numerical Modeling of Odorant Uptake in the Rat Nasal Cavity
,”
Chem. Senses
0379-864X,
32
(
3
), pp.
273
284
.
35.
Yang
,
G. C.
,
Scherer
,
P. W.
, and
Mozell
,
M. M.
, 2007, “
Modeling Inspiratory and Expiratory Steady-State Velocity Fields in the Sprague-Dawley Rat Nasal Cavity
,”
Chem. Senses
0379-864X,
32
(
3
), pp.
215
223
.
36.
Negus
,
V. E.
, 1958,
The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses
,
Livingstone
,
London
.
37.
Freitas
,
C.
, 1993, “
Journal of Fluids Engineering Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
339
340
.
38.
Shi
,
H.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2006, “
Laminar Airflow and Nanoparticle or Vapor Deposition in a Human Nasal Cavity Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
697
706
.
39.
Shi
,
H.
,
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2007, “
Modeling of Inertial Particle Transport and Deposition in Human Nasal Cavities With Wall Roughness
,”
J. Aerosol Sci.
0021-8502,
38
(
4
), pp.
398
419
.
40.
Liu
,
Y.
,
Matida
,
E. A.
,
Gu
,
J.
, and
Johnson
,
M. R.
, 2007, “
Numerical Simulation of Aerosol Deposition in a 3-D Human Nasal Cavity Using RANS, RANS/EIM, and LES
,”
J. Aerosol Sci.
0021-8502,
38
(
7
), pp.
683
700
.
41.
Xi
,
J.
, and
Longest
,
P. W.
, 2008, “
Numerical Predictions of Submicrometer Aerosol Deposition in the Nasal Cavity Using a Novel Drift Flux Approach
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5562
5577
.
42.
Xi
,
J.
,
Longest
,
P.
, and
Martonen
,
T. B.
, 2008, “
Effects of the Laryngeal Jet on Nano- and Microparticle Transport and Deposition in an Approximate Model of the Upper Tracheobronchial Airways
,”
J. Appl. Physiol.
8750-7587,
104
(
6
), pp.
1761
1777
.
43.
Longest
,
P. W.
, and
Vinchurkar
,
S.
, 2007, “
Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models With Comparisons to Experimental Data
,”
Med. Eng. Phys.
1350-4533,
29
(
3
), pp.
350
366
.
44.
Vinchurkar
,
S.
, and
Longest
,
P. W.
, 2008, “
Evaluation of Hexahedral, Prismatic and Hybrid Mesh Styles for Simulating Respiratory Aerosol Dynamics
,”
Comput. Fluids
0045-7930,
37
(
3
), pp.
317
331
.
45.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
46.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
, 1986, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
0098-2202,
108
(
1
), p.
2
.
47.
Craven
,
B. A.
,
Neuberger
,
T.
,
Paterson
,
E. G.
,
Webb
,
A. G.
,
Josephson
,
E. M.
,
Morrison
,
E. E.
, and
Settles
,
G. S.
, 2007, “
Reconstruction and Morphometric Analysis of the Nasal Airway of the Dog (Canis Familiaris) and Implications Regarding Olfactory Airflow
,”
Anat. Rec.
0003-276X,
290
(
11
), pp.
1325
1340
.
48.
Madasu
,
S.
,
Borhan
,
A.
, and
Ultman
,
J. S.
, 2006, “
An Axisymmetric Single-Path Model for Gas Transport in the Conducting Airways
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
1
), pp.
69
75
.
49.
Gedeon
,
D.
, 1986, “
Mean-Parameter Modeling of Oscillating Flow
,”
ASME J. Heat Transfer
0022-1481,
108
(
3
), pp.
513
518
.
50.
Elad
,
D.
,
Liebenthal
,
R.
,
Wenig
,
B. L.
, and
Einav
,
S.
, 1993, “
Analysis of Air Flow Patterns in the Human Nose
,”
Med. Biol. Eng. Comput.
0140-0118,
31
(
6
), pp.
585
592
.
51.
Naftali
,
S.
,
Schroter
,
R. C.
,
Shiner
,
R. J.
, and
Elad
,
D.
, 1998, “
Transport Phenomena in the Human Nasal Cavity: A Computational Model
,”
Ann. Biomed. Eng.
0090-6964,
26
(
5
), pp.
831
839
.
52.
Naftali
,
S.
,
Rosenfeld
,
M.
,
Wolf
,
M.
, and
Elad
,
D.
, 2005, “
The Air-Conditioning Capacity of the Human Nose
,”
Ann. Biomed. Eng.
0090-6964,
33
(
4
), pp.
545
553
.
53.
Elad
,
D.
,
Naftali
,
S.
,
Rosenfeld
,
M.
, and
Wolf
,
M.
, 2006, “
Physical Stresses at the Air-Wall Interface of the Human Nasal Cavity During Breathing
,”
J. Appl. Physiol.
8750-7587,
100
(
3
), pp.
1003
1010
.
54.
Craven
,
B. A.
, 2008, “
A Fundamental Study of the Anatomy, Aerodynamics, and Transport Phenomena of Canine Olfaction
,” Ph.D. thesis, Pennsylvania State University, University Park, PA.
55.
Loudon
,
C.
, and
Tordesillas
,
A.
, 1998, “
The Use of the Dimensionless Womersley Number to Characterize the Unsteady Nature of Internal Flow
,”
J. Theor. Biol.
0022-5193,
191
(
1
), pp.
63
78
.
56.
Telionis
,
D. P.
, 1981,
Unsteady Viscous Flows
,
Springer-Verlag
,
New York
.
57.
Cimbala
,
J. M.
, and
Cengel
,
Y. A.
, 2008,
Essentials of Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
58.
White
,
F. M.
, 2003,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
59.
Peacock
,
J.
,
Jones
,
T.
,
Tock
,
C.
, and
Lutz
,
R.
, 1998, “
The Onset of Turbulence in Physiological Pulsatile Flow in a Straight Tube
,”
Exp. Fluids
0723-4864,
24
(
1
), pp.
1
9
.
60.
Peacock
,
J.
,
Jones
,
T.
,
Tock
,
C.
, and
Lutz
,
R.
, 1997, “
An in Vitro Study on the Effect of Branch Points on the Stability of Coronary Artery Flow
,”
Med. Eng. Phys.
1350-4533,
19
(
2
), pp.
101
108
.
61.
Tennekes
,
H.
, and
Lumley
,
J. L.
, 1972,
A First Course in Turbulence
,
MIT
,
Cambridge, MA
.
62.
Mathieu
,
J.
, and
Scott
,
J.
, 2000,
An Introduction to Turbulent Flow
,
Cambridge University Press
,
New York
.
63.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
New York
.
64.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Cañada, CA
.
65.
Ryval
,
J.
,
Straatman
,
A. G.
, and
Steinman
,
D. A.
, 2004, “
Two-Equation Turbulence Modeling of Pulsatile Flow in a Stenosed Tube
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
625
635
.
66.
Varghese
,
S. S.
, and
Frankel
,
S. H.
, 2003, “
Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
445
460
.
67.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
, 2008, “
Modeling Transition to Turbulence in Eccentric Stenotic Flows
,”
ASME J. Biomech. Eng.
0148-0731,
130
, p.
014503
.
68.
Varghese
,
S. S.
,
Frankel
,
S. H.
, and
Fischer
,
P. F.
, 2007, “
Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow
,”
J. Fluid Mech.
0022-1120,
582
, pp.
253
280
.
69.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
, 2003, “
Low-Reynolds-Number Turbulent Flows in Locally Constricted Conduits: A Comparison Study
,”
AIAA J.
0001-1452,
41
(
5
), pp.
831
840
.
70.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
, 2003, “
Laminar-to-Turbulent Fluid-Particle Flows in a Human Airway Model
,”
Int. J. Multiphase Flow
0301-9322,
29
(
2
), pp.
271
289
.
71.
Younis
,
B. A.
, and
Berger
,
S. A.
, 2004, “
A Turbulence Model for Pulsatile Arterial Flows
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
578
584
.
72.
Proctor
,
D. F.
, 1982, “
The Mucociliary System
,”
The Nose: Upper Airway Physiology and the Atmospheric Environment
,
Elsevier Biomedical Press
,
New York
, Chap. 10, pp.
245
278
.
73.
Getchell
,
T. V.
,
Heck
,
G. L.
,
Desimone
,
J. A.
, and
Price
,
S.
, 1980, “
Location of Olfactory Receptor-Sites—Inferences From Latency Measurements
,”
Biophys. J.
0006-3495,
29
(
3
), pp.
397
411
.
74.
Reznik
,
G. K.
, 1990, “
Comparative Anatomy, Physiology, and Function of the Upper Respiratory-Tract
,”
Environ. Health Perspect.
0091-6765,
85
, pp.
171
176
.
75.
Menco
,
B. P. M.
, and
Farbman
,
A. I.
, 1992, “
Ultrastructural Evidence for Multiple Mucous Domains in Frog Olfactory Epithelium
,”
Cell Tissue Res.
0302-766X,
270
(
1
), pp.
47
56
.
76.
Sharc Ltd.
, 2007, HARPOON 2.5 User Guide.
77.
Biswas
,
R.
, and
Strawn
,
R. C.
, 1998, “
Tetrahedral and Hexahedral Mesh Adaptation for CFD Problems
,”
Appl. Numer. Math.
0168-9274,
26
(
1–2
), pp.
135
151
.
78.
Shakib
,
F.
, 1989, “
Finite Element Analysis of the Compressible Euler and Navier–Stokes Equations
,” Ph.D. thesis, Stanford University, Stanford, CA.
79.
Hughes
,
T. J. R.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
, 1989, “
A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
73
(
2
), pp.
173
189
.
80.
ACUSIM Software, Inc.
, 2007, AcuSolve 1.7 Reference Manual.
81.
Lyons
,
D. C.
,
Peltier
,
L. J.
,
Zajaczkowski
,
F. J.
, and
Paterson
,
E. G.
, 2008, “
Assessment of DES Models for Separated Flow From a Hump in a Turbulent Boundary Layer
,”
ASME J. Fluids Eng.
0098-2202, in press.
82.
Roache
,
P. J.
, 1994, “
Perspective—A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
0098-2202,
116
(
3
), pp.
405
413
.
You do not currently have access to this content.