Knowledge of the behavior and mechanics of a total knee replacement (TKR) in an in vivo environment is key to optimizing the functional outcomes of the implant procedure. Computational modeling has shown to be an important tool for investigating biomechanical variables that are difficult to address experimentally. To assist in examining TKR mechanics, a dynamic finite-element model of a TKR is presented. The objective of the study was to develop and evaluate a model that could simulate full knee motion using a physiologically consistent quadriceps action, without prescribed joint kinematics. The model included tibiofemoral (TFJs) and patellofemoral joints (PFJs), six major ligament bundles and was driven by a uni-axial representation of a quadricep muscle. An initial parameter screening analysis was performed to assess the relative importance of 31 different model parameters. This analysis showed that ligament insertion location and initial ligament strain were significant factors affecting simulated joint kinematics and loading, with the contact friction coefficient playing a lesser role and ligament stiffness having little effect. The model was then used to simulate in vitro experiments utilizing a flexed-knee-stance testing rig. General model performance was assessed by comparing simulation results with experimentally measured kinematics and tibial reaction forces collected from two implanted specimens. The simulations were able to reproduce experimental differences observed between the test specimens and were able to accurately predict trends seen in the tibial reaction loads. The simulated kinematics of the TFJ and PFJ were less consistent when compared with experimental data but still reproduced many trends.

1.
D’Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Slamin
,
J. E.
, and
Colwell
,
C. W.
, 2005, “
In Vivo Knee Forces After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
440
, pp.
45
49
.
2.
Zhao
,
D.
,
Banks
,
S. A.
,
D’Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
, 2007, “
In Vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
, pp.
593
602
. 0736-0266
3.
Essinger
,
J. R.
,
Leyvraz
,
P. F.
,
Heegard
,
J. H.
, and
Robertson
,
D. D.
, 1989, “
A Mathematical Model for the Evaluation of the Behaviour During Flexion of Condylar-Type Knee Prostheses
,”
J. Biomech.
0021-9290,
22
, pp.
1229
1241
.
4.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1994, “
Optimization of the Bearing Surface Geometry of Total Knees
,”
J. Biomech.
,
27
, pp.
255
264
. 0021-9290
5.
Piazza
,
S. J.
, and
Delp
,
S. L.
, 2001, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
599
606
.
6.
Fregly
,
B. J.
,
Bei
,
Y. H.
, and
Sylvester
,
M. E.
, 2003, “
Experimental Evaluation of an Elastic Foundation Model to Predict Contact Pressures in Knee Replacements
,”
J. Biomech.
0021-9290,
36
, pp.
1659
1668
.
7.
Barink
,
A.
,
van Kampen
,
A.
,
de Waal Malefijt
,
M.
, and
Verdonschot
,
N.
, 2005, “
A Three-Dimensional Dynamic Finite Element Model of the Prosthetic Knee Joint: Simulation of Joint Laxity and Kinematics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
, pp.
415
424
.
8.
Bartel
,
D. L.
,
Bicknell
,
V. L.
, and
Wright
,
T. M.
, 1986, “
The Effect of Conformity, Thickness, and Material on Stresses in Ultra-High Molecular Weight Components for Total Joint Replacement
,”
J. Bone Jt. Surg., Am. Vol.
,
68-A
, pp.
1041
1051
. 0021-9355
9.
Bartel
,
D. L.
,
Rawlinson
,
J. J.
,
Burstein
,
A. H.
,
Ranawat
,
C. S.
, and
Flynn
,
W. F.
, 1995, “
Stresses in Polyethylene Components of Contemporary Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
,
317
, pp.
76
82
. 0009-921X
10.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1998, “
Computer Model to Predict Subsurface Damage in Tibial Inserts of Total Knees
,”
J. Orthop. Res.
0736-0266,
16
, pp.
564
571
.
11.
Giddings
,
V. L.
,
Kurtz
,
S. M.
, and
Edidin
,
A. A.
, 2001, “
Total Knee Replacement Polyethylene Stresses During Loading in a Knee Simulator
,”
ASME J. Tribol.
0742-4787,
123
, pp.
842
847
.
12.
Otto
,
J. K.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
, 2001, “
Mobility and Contact Mechanics of a Rotating Platform Total Knee Replacement
,”
Clin. Orthop. Relat. Res.
,
392
, pp.
24
37
. 0009-921X
13.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
, 2002, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
, pp.
267
275
.
14.
Taylor
,
M.
, and
Barrett
,
D. S.
, 2003, “
Explicit Finite Element Simulation of Eccentric Loading in Total Knee Replacement
,”
Clin. Orthop. Relat. Res.
0009-921X,
414
, pp.
162
171
.
15.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
0021-9290,
38
, pp.
323
331
.
16.
Barink
,
M.
,
De Waal Malefijt
,
M.
,
Celada
,
P.
,
Vena
,
P.
,
Van Kampen
,
A.
, and
Verdonschot
,
N.
, 2008, “
A Mechanical Comparison of High-Flexion and Conventional Total Knee Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
, pp.
297
307
.
17.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P.
, 2005, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
813
818
.
18.
Zavatsky
,
A. B.
, 1997, “
A Kinematic-Freedom Analysis of a Flexed-Knee-Stance Testing Rig
,”
J. Biomech.
,
30
, pp.
277
280
. 0021-9290
19.
Post
,
W. R.
, 1999, “
Clinical Evaluation of Patients With Patellofemoral Disorders
,”
Arthroscopy: J. Relat. Surg.
,
15
, pp.
841
851
. 0749-8063
20.
Soderkvist
,
I.
, and
Wedin
,
P. A.
, 1993, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
0021-9290,
26
, pp.
1473
1477
.
21.
Besl
,
P. J.
, and
McKay
,
N. D.
, 1992, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
14
, pp.
239
256
.
22.
Kwan
,
M. K.
,
Lin
,
T. H.-C.
, and
Woo
,
S. L.
, 1993, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
, pp.
447
452
.
23.
Schatzmann
,
L.
,
Brunner
,
P.
, and
Stäubli
,
H. U.
, 1998, “
Effect of Cyclic Preconditioning on the Tensile Properties of Human Quadriceps Tendons and Patellar Ligaments
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
6
, pp.
S56
S61
.
24.
Sverdlik
,
A.
, and
Lanir
,
Y.
, 2002, “
Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
78
84
.
25.
Lanovaz
,
J. L.
, 2006, “
Development Validation and Application of a 3D Dynamic Finite-Element Model of a Total Knee Replacement
,” Ph.D. thesis, Queen’s University, Kingston, ON.
26.
Lanovaz
,
J. L.
, and
Ellis
,
R. E.
, 2008, “
Dynamic Simulation of a Displacement-Control Total Knee Replacement Wear Tester
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
222
, pp.
669
681
.
27.
Hallquist
,
J. O.
, 2006,
LS-DYNA Theoretical Manual-2006
,
Livermore Software Technology Corporation
,
Livermore, CA
.
28.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1991, “
Articular Contact in a 3-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
24
, pp.
1019
1031
.
29.
Butler
,
D. L.
,
Kay
,
M. D.
, and
Stouffer
,
D. C.
, 1986, “
Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments
,”
J. Biomech.
0021-9290,
19
, pp.
425
432
.
30.
Trent
,
P. S.
,
Walker
,
P. S.
, and
Wolf
,
B.
, 1976, “
Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint
,”
Clin. Orthop.
,
117
, pp.
263
270
. 0095-8654
31.
Harner
,
C. D.
,
Xerogeanes
,
J. W.
,
Livesay
,
G. A.
,
Carlin
,
G. J.
,
Smith
,
B. A.
,
Kusayama
,
T.
,
Kashiwaguchi
,
S.
, and
Woo
,
S. L. Y.
, 1995, “
The Human Posterior Crucitae Ligament Complex: An Interdisciplinary Study
,”
Am. J. Sports Med.
,
23
, pp.
736
745
. 0363-5465
32.
Sugita
,
T.
, and
Amis
,
A. A.
, 2001, “
Anatomic and Biomechanical Study of the Lateral Collateral and Popliteofibular Ligaments
,”
Am. J. Sports Med.
,
29
, pp.
466
472
. 0363-5465
33.
Robinson
,
J. R.
,
Bull
,
A. M. J.
, and
Amis
,
A. A.
, 2005, “
Structural Properties of the Medial Collateral Ligament Complex of the Human Knee
,”
J. Biomech.
0021-9290,
38
, pp.
1067
1074
.
34.
LaPrade
,
R. F.
,
Bollom
,
T. S.
,
Wentorf
,
F. A.
,
Wills
,
N. J.
, and
Meister
,
K.
, 2005, “
Mechanical Properties of the Posterolateral Structures of the Knee
,”
Am. J. Sports Med.
,
33
, pp.
1386
1391
. 0363-5465
35.
Mommersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Kauer
,
J. M. G.
, 1996, “
Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach
,”
J. Biomech.
0021-9290,
29
, pp.
151
160
.
36.
Blankevoort
,
L.
, and
Huiskes
,
R.
, 1996, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
29
, pp.
955
961
.
37.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
, 1998, “
Three-Dimensional Dynamic Behaviour of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
1350-4533,
20
, pp.
276
290
.
38.
Li
,
G.
,
Gil
,
J.
,
Kanamori
,
A.
, and
Woo
,
S. L. Y.
, 1999, “
A Validated Three-Dimensional Computational Model of a Human Knee Joint
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
657
662
.
39.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
, 1997, “
A Musculoskeletal Model of the Knee for Evaluating Ligament Forces During Isometric Contractions
,”
J. Biomech.
0021-9290,
30
, pp.
163
176
.
40.
Gardiner
,
J. C.
,
Weiss
,
J. A.
, and
Rosenberg
,
T. D.
, 2001, “
Strain in the Human Medial Collateral Ligament During Valgus Loading of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
391
, pp.
266
274
.
41.
Stäubli
,
H. U.
,
Schatzmann
,
L.
,
Brunner
,
P.
,
Rincón
,
L.
, and
Nolte
,
L. P.
, 1999, “
Mechanical Tensile Properties of the Quadriceps Tendon and Patellar Ligament in Young Adults
,”
Am. J. Sports Med.
,
27
, pp.
27
34
. 0363-5465
42.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
43.
Fellows
,
R. A.
,
Hill
,
N. A.
,
Gill
,
H. S.
,
MacIntyre
,
N. J.
,
Harrison
,
M. M.
,
Ellis
,
R. E.
, and
Wilson
,
D. R.
, 2005, “
Magnetic Resonance Imaging for In Vivo Assessment of Three-Dimensional Patellar Tracking
,”
J. Biomech.
,
38
, pp.
1643
1652
. 0021-9290
44.
Montgomery
,
D.
, 2005,
Design and Analysis of Experiments
,
Wiley
,
Hoboken, NJ
.
45.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266,
21
, pp.
1098
1106
.
46.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
,
V.
,
Thomas
,
M.
, and
Woo
,
S. L.-Y.
, 2004, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation
,”
J. Biomech.
,
37
, pp.
383
390
. 0021-9290
47.
Peña
,
E.
,
Martinez
,
M. A.
,
Calvo
,
B.
,
Palanca
,
D.
, and
Doblaré
,
M.
, 2005, “
A Finite Element Simulation of the Effect of Graft Stiffness and Graft Tensioning in ACL Reconstruction
,”
Clin. Biomech. (Bristol, Avon)
,
20
, pp.
636
644
. 0268-0033
48.
Weiss
,
J. A.
,
Gardiner
,
J. C.
,
Ellis
,
B. J.
,
Lujan
,
T. J.
, and
Phatak
,
N. S.
, 2005, “
Three-Dimensional Finite Element Modeling of Ligaments: Technical Aspects
,”
Med. Eng. Phys.
1350-4533,
27
, pp.
845
861
.
49.
Hehne
,
H. J.
, 1990, “
Biomechanics of the Patellofemoral Joint and Its Clinical Relevance
,”
Clin. Orthop. Relat. Res.
,
258
, pp.
73
85
. 0009-921X
50.
Oishi
,
C. S.
,
Kaufman
,
K. R.
,
Irby
,
S. E.
, and
Colwell
,
C. W.
, 1996, “
Effects of Patellar Thickness on Compression and Shear Forces in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
331
, pp.
283
290
. 0009-921X
51.
Hsu
,
H. C.
,
Luo
,
Z. P.
,
Rand
,
J. A.
, and
An
,
K. N.
, 1996, “
Influence of Patellar Thickness on Patellar Tracking and Patellofemoral Contact Characteristics After Total Knee Arthroplasty
,”
J. Arthroplasty
,
11
, pp.
69
80
. 0883-5403
52.
Cheng
,
C. K.
,
Yao
,
N. K.
,
Liu
,
H. C.
, and
Lee
,
K. S.
, 1996, “
Influences of Configuration Changes of the Patella on the Knee Extensor Mechanism
,”
Clin. Biomech. (Bristol, Avon)
,
11
, pp.
116
120
. 0268-0033
53.
Stiehl
,
J. B.
, 2005, “
A Clinical Overview Patellofemoral Joint and Application to Total Knee Arthroplasty
,”
J. Biomech.
,
38
, pp.
209
214
. 0021-9290
54.
Sidles
,
J. A.
,
Larson
,
R. V.
,
Garbini
,
J. L.
,
Downey
,
D. J.
, and
Matsen
,
F. A.
, 1988, “
Ligament Length Relationships in the Moving Knee
,”
J. Orthop. Res.
0736-0266,
6
, pp.
593
610
.
55.
O’Connor
,
J. J.
,
Shercliff
,
T.
,
FitzPatrick
,
D.
,
Bradley
,
J.
,
Daniel
,
D. M.
,
Biden
,
E.
, and
Goodfellow
,
J.
, 1990,
Knee Ligaments: Structure, Function, Injury and Repair
,
Raven
,
New York
.
56.
Fehring
,
T. K.
, and
Valadie
,
A. L.
, 1994, “
Knee Instability After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
299
, pp.
157
164
. 0009-921X
57.
Liau
,
J. J.
,
Cheng
,
C. K.
,
Huang
,
C. H.
, and
Lo
,
W. H.
, 2002, “
The Effect of Malalignment on Stresses in Polyethylene Component of Total Knee Prostheses—A Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
,
17
, pp.
140
146
. 0268-0033
58.
Martelli
,
S.
,
Ellis
,
R. E.
,
Marcacci
,
M.
, and
Zaffagnini
,
S. F.
, 1998, “
Total Knee Arthroplasty Kinematics
,”
J. Arthroplasty
,
13
, pp.
145
155
. 0883-5403
59.
Ramakrishnan
,
H. K.
, and
Kadaba
,
M. P.
, 1991, “
On the Estimation of Joint Kinematics During Gait
,”
J. Biomech.
0021-9290,
24
, pp.
969
977
.
60.
MacWilliams
,
B. A.
,
DesJardins
,
J. D.
,
Wilson
,
D. R.
,
Romero
,
J.
, and
Chao
,
E. Y. S.
, 1998, “
A Repeatable Alignment Method and Local Coordinate Description for Knee Joint Testing and Kinematic Measurement
,”
J. Biomech.
0021-9290,
31
, pp.
947
950
.
61.
Mizuno
,
Y.
,
Kumagai
,
M.
,
Mattessich
,
S. M.
,
Elias
,
J. J.
,
Ramrattan
,
N.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y.
, 2001, “
Q-Angle Influences Tibiofemoral and Patellofemoral Kinematics
,”
J. Orthop. Res.
0736-0266,
19
, pp.
834
840
.
62.
Wilson
,
D. R.
,
Apreleva
,
M. V.
,
Eichler
,
M. J.
, and
Harrold
,
F. R.
, 2003, “
Accuracy and Repeatability of a Pressure Measurement System in the Patellofemoral Joint
,”
J. Biomech.
0021-9290,
36
, pp.
1909
1915
.
You do not currently have access to this content.