Mechanical stimulation has been shown to dramatically improve mechanical and functional properties of gel-derived tissue engineered blood vessels (TEBVs). Adjusting factors such as cell source, type of extracellular matrix, cross-linking, magnitude, frequency, and time course of mechanical stimuli (among many other factors) make interpretation of experimental results challenging. Interpretation of data from such multifactor experiments requires modeling. We present a modeling framework and simulations for mechanically mediated growth, remodeling, plasticity, and damage of gel-derived TEBVs that merge ideas from classical plasticity, volumetric growth, and continuum damage mechanics. Our results are compared with published data and suggest that this model framework can predict the evolution of geometry and material behavior under common experimental loading scenarios.

1.
Nerem
,
R. M.
, and
Seliktar
,
D.
, 2001, “
Vascular Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
225
243
.
2.
Isenberg
,
B. C.
,
Williams
,
C.
, and
Tranquillo
,
R. T.
, 2006, “
Small-Diameter Artificial Arteries Engineered In Vitro
,”
Circ. Res.
0009-7330,
98
, pp.
25
35
.
3.
Ku
,
D. K.
, and
Han
,
H. -C.
, 2003, “
Assessment of Function in Tissue-Engineered Vascular Grafts
,”
Functional Tissue Engineering
,
F.
Guilak
,
D. L.
Butler
,
S. A.
Goldstein
, and
D. L.
Mooney
, eds.,
Springer-Verlag
,
New York
, pp.
258
267
.
4.
Weinberg
,
C. B.
, and
Bell
,
E.
, 1986, “
A Blood Vessel Model Constructed From Collagen and Cultured Vascular Cells
,”
Science
0036-8075,
231
, pp.
397
400
.
5.
Seliktar
,
D.
,
Black
,
R. A.
,
Vito
,
R. P.
, and
Nerem
,
R. M.
, 2000, “
Dynamic Mechanical Conditioning of Collagen-Gel Blood Vessel Constructs Induces Remodeling In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
351
362
.
6.
Engelmayr
,
G. C.
,
Sales
,
V.
,
Mayer
,
J.
, and
Sacks
,
M. S.
, 2006, “
Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues
,”
Biomaterials
0142-9612,
27
(
36
), pp.
6083
6095
.
7.
Niklason
,
L. E.
,
Gao
,
J.
,
Abbot
,
W. M.
,
Hirschi
,
K. K.
,
Houser
,
S.
,
Marini
,
R.
, and
Langer
,
R.
, 1999, “
Functional Arteries Grown In Vitro
,”
Science
0036-8075,
284
, pp.
489
493
.
8.
L’Heureux
,
N.
,
Paquet
,
S.
,
Labbe
,
R.
,
Germain
,
L.
, and
Auger
,
F.
, 1998, “
A Completely Biological Tissue-Engineered Human Blood Vessel
,”
FASEB J.
0892-6638,
12
, pp.
47
56
.
9.
Kanda
,
K.
,
Matsuda
,
T.
, and
Oka
,
T.
, 1993, “
Mechanical Stress Induced Cellular Orientation and Phenotypic Modulation of 3-D Cultured Smooth Muscle Cells
,”
ASAIO J.
1058-2916,
39
, pp.
M686
M690
.
10.
Seliktar
,
D.
,
Nerem
,
R. M.
, and
Galis
,
Z. S.
, 2003, “
Mechanical Strain-Stimulated Remodeling of Tissue-Engineered Blood Vessels Constructs
,”
Tissue Eng.
1076-3279,
9
(
4
), pp.
657
666
.
11.
Isenberg
,
B. C.
, and
Tranquillo
,
R. T.
, 2003, “
Long-Term Cyclic Distention Enhances the Mechanical Properties of Collagen-Based Media-Equivalents
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
937
949
.
12.
Skalak
,
R.
, 1981,
Growth as a Finite Displacement Field
,
Martinus Nijhoff
,
The Hague
.
13.
Skalak
,
R.
,
Zargaryan
,
S.
,
Jain
,
R. K.
,
Netti
,
P. A.
, and
Hoger
,
A.
, 1996, “
Compatibility and the Genesis of Residual Stress by Volumetric Growth
,”
J. Math. Biol.
0303-6812,
34
(
8
), pp.
889
914
.
14.
Fridez
,
P.
,
Rachev
,
A.
,
Meister
,
J. -J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
, 2001, “
Model of Geometrical and Smooth Muscle Tone Adaptation of Carotid Artery Subject to Step Change in Pressure
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
280
, pp.
H2752
H2760
.
15.
Rachev
,
A.
, 2000, “
A Model of Arterial Adaptation to Alterations in Blood Flow
,”
J. Elast.
0374-3535,
61
, pp.
83
111
.
16.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
17.
Taber
,
L. A.
, 1998, “
A Model of Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
348
354
.
18.
Taber
,
L. A.
, and
Eggers
,
D. W.
, 1996, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
0022-5193,
180
(
4
), pp.
343
357
.
19.
Taber
,
L. A.
,
Lin
,
I. E.
, and
Clark
,
E. B.
, 1995, “
Mechanics of Cardiac Looping
,”
Dev. Dyn.
1058-8388,
203
(
1
), pp.
42
50
.
20.
Kachanov
,
L.
, 1958, “
Time of the Rupture Process Under Creep Conditions
,”
Izvestija Akademii Nauk Sojuza Sovetskich Socialisticeskich Respubliki (SSSR), Otdelenie Techniceskich Nauk (Moskra)
,
8
, pp.
26
31
.
21.
Kachanov
,
L.
, 1986,
Introduction to Continuum Damage Mechanics
,
Martinus Nijhoff
,
Dordrecht, The Netherlands
.
22.
Rabotnov
,
Y.
, 1968, “
Creep Rupture
,”
Proceedings of the XII International Congress on Applied Mechanics
.
23.
Fung
,
Y. C.
,
Liu
,
S. Q.
, and
Zhou
,
J. B.
, 1993, “
Remodeling of the Constitutive Equation While a Blood Vessel Remodels Itself Under Stress
,”
ASME J. Biomech. Eng.
,
115
, pp.
453
459
. 0148-0731
24.
Girton
,
T.
,
Oegema
,
T.
, and
Tranquillo
,
R. T.
, 1999, “
Exploiting Glycation to Stiffen and Strengthen Tissue Equivalents for Tissue Engineering
,”
J. Biomed. Mater. Res.
,
46
, pp.
87
92
. 0021-9304
25.
Elbjeirami
,
W. M.
,
Yonter
,
E. O.
,
Starcher
,
B. C.
, and
West
,
J. L.
, 2003, “
Enhancing Mechanical Properties of Tissue-Engineered Constructs Via Lysyl Oxidase Crosslinking Activity
,”
J. Biomed. Mater. Res.
,
66A
, pp.
513
521
. 0021-9304
26.
Chuong
,
C. J.
, and
Fung
,
Y. C.
, 1986, “
On Residual Stress in Arteries
,”
ASME J. Biomech. Eng.
,
108
, pp.
189
192
. 0148-0731
27.
Wagenseil
,
J. E.
,
Elson
,
E.
, and
Okamoto
,
R. J.
, 2004, “
Cell Orientation Influences the Biaxial Mechanical Properties of Fibroblast Populated Collagen Vessels
,”
Ann. Biomed. Eng.
,
32
(
5
), pp.
720
731
. 0090-6964
28.
Zaucha
,
M. T.
,
Raykin
,
J.
,
Wan
,
W.
,
Gauvin
,
R.
,
Auger
,
F.
,
Germain
,
L.
, and
Gleason
,
R. L.
, 2009, “
A Novel Biaxial Computer Controlled Bioreactor and Biomechanical Testing Device for Vascular Tissue Engineering
,”
Tissue Eng. Part A
, to be published.
29.
Syedain
,
Z. H.
,
Weinberg
,
J. S.
, and
Tranquillo
,
R. T.
, 2008, “
Cyclic Distension of Fibrin-Based Tissue Constructs: Evidence of Adaptation During Growth of Engineered Connective Tissue
,”
Proc. Natl. Acad. Sci. U.S.A.
,
105
(
18
), pp.
6537
6542
. 0027-8424
30.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, Organs
,
Springer-Verlag
,
New York
.
31.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
, 2005, “
A 2-D Constrained Mixture Model for Arterial Adaptations to Large Changes in Flow, Pressure, and Axial Stretch
,”
IMA J. Math. Appl. Med. Biol.
,
22
(
4
), pp.
347
369
. 1477-8599
32.
Feng
,
Z.
,
Yamato
,
M.
,
Akutsu
,
T.
,
Nakamura
,
T.
,
Okano
,
T.
, and
Umezu
,
M.
, 2003, “
Investigation of the Mechanical Properties of Contracted Collagen Gels as a Scaffold for Tissue Engineering
,”
Artif. Organs
,
27
(
1
), pp.
84
91
. 0160-564X
33.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 2007, “
Mechanics of Arterial Subfailure With Increasing Loading Rate
,”
J. Biomech.
,
40
(
8
), pp.
1806
1812
. 0021-9290
You do not currently have access to this content.