Numerical simulations that incorporate a biochemomechanical model for the contractility of the cytoskeleton have been used to rationalize the following observations. Uniaxial cyclic stretching of cells causes stress fibers to align perpendicular to the stretch direction, with degree of alignment dependent on the stretch strain magnitude, as well as the frequency and the transverse contraction of the substrate. Conversely, equibiaxial cyclic stretching induces a uniform distribution of stress fiber orientations. Demonstrations that the model successfully predicts the alignments experimentally found are followed by a parameter study to investigate the influence of a range of key variables including the stretch magnitude, the intrinsic rate sensitivity of the stress fibers, the straining frequency, and the transverse contraction of the substrate. The primary predictions are as follows. The rate sensitivity has a strong influence on alignment, equivalent to that attained by a few percent of additional stretch. The fiber alignment increases with increasing cycling frequency. Transverse contraction of the substrate causes the stress fibers to organize into two symmetrical orientations with respect to the primary stretch direction.

1.
Franke
,
R. P.
,
Grafe
,
M.
,
Schnittler
,
H.
,
Seiffge
,
D.
,
Mittermayer
,
C.
, and
Drenckhahn
,
D.
, 1984, “
Induction of Human Vascular Endothelial Stress Fibers by Fluid Shear Stress
,”
Nature (London)
0028-0836,
307
, pp.
648
649
.
2.
Dartsch
,
P. C.
, and
Betz
,
E.
, 1989, “
Response of Cultured Endothelial-Cells to Mechanical Stimulation
,”
Basic Res. Cardiol.
0300-8428,
84
, pp.
268
281
.
3.
Kaunas
,
R.
,
Nguyen
,
P.
,
Usami
,
S.
, and
Chien
,
S.
, 2005, “
Cooperative Effects of Rho and Mechanical Stretch on Stress Fiber Organization
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
102
, pp.
15895
15900
.
4.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
, and
Yin
,
F. C.
, 2000, “
Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
1165
1171
.
5.
Iba
,
T.
, and
Sumpio
,
B. E.
, 1991, “
Morphological Response of Human Endothelial Cells Subjected to Cyclic Strain Invitro
,”
Microvasc. Res.
0026-2862,
42
, pp.
245
254
.
6.
Buck
,
R. C.
, 1980, “
Reorientation Response of Cells to Repeated Stretch and Recoil of the Substratum
,”
Exp. Cell Res.
0014-4827,
127
, pp.
470
474
.
7.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
,
Bürki
,
E.
,
Meister
,
J.-J.
, and
Brunner
,
H. R.
, 1995, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
15
, pp.
1781
1786
.
8.
Wang
,
H. C.
,
Ip
,
W.
,
Boissy
,
R.
, and
Grood
,
E. S.
, 1995, “
Cell Orientation Response to Cyclically Deformed Substrates: Experimental Validation of a Cell Model
,”
J. Biomech.
0021-9290,
7
, pp.
130
138
.
9.
Haga
,
J. H.
,
Li
,
Y. S. J.
, and
Chien
,
S.
, 2007, “
Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells
,”
J. Biomech.
0021-9290,
40
, pp.
947
960
.
10.
Wang
,
J. H.
,
Goldschmidt-Clermont
,
P.
, and
Yin
,
F. C.
, 2001, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
0021-9290,
34
, pp.
1563
1572
.
11.
Yano
,
Y.
,
Saito
,
Y.
,
Narumiya
,
S.
, and
Sumpio
,
B. E.
, 1996, “
Involvement of Rho P21 in Cyclic Strain-Induced Tyrosine Phosphorylation of Focal Adhesion Kinase (Pp125(FAK)), Morphological Changes and Migration of Endothelial Cells
,”
Biochem. Biophys. Res. Commun.
0006-291X,
224
, pp.
508
515
.
12.
Birukov
,
K. G.
,
Jacobson
,
J. R.
,
Flores
,
A. A.
,
Ye
,
S. Q.
,
Birukova
,
A. A.
,
Verin
,
A. D.
, and
Garcia
,
J. G. N.
, 2003, “
Magnitude-Dependent Regulation of Pulmonary Endothelial Cell Barrier Function by Cyclic Stretch
,”
Am. J. Physiol.
0002-9513,
285
, pp.
L785
L797
.
13.
Kito
,
H.
,
Chen
,
E. L.
,
Wang
,
X.
,
Ikeda
,
M.
,
Azuma
,
N.
,
Nakajima
,
N.
,
Gahtan
,
V.
, and
Sumpio
,
B. E.
, 2000, “
Role of Mitogen-Activated Protein Kinases in Pulmonary Endothelial Cells Exposed to Cyclic Strain
,”
J. Appl. Physiol.
8750-7587,
89
, pp.
2391
2400
.
14.
Wang
,
J. H.
, 2000, “
Substrate Deformation Determines Actin Cytoskeleton Reorganization: A Mathematical Modeling and Experimental Study
,”
J. Theor. Biol.
0022-5193,
202
, pp.
33
41
.
15.
Kaunas
,
R.
,
Usami
,
S.
, and
Chien
,
S. S.
, 2006, “
Regulation of Stretch-Induced JNK Activation by Stress Fiber Orientation
,”
Cell Signal
0898-6568,
18
, pp.
1924
1931
.
16.
Takemasa
,
T.
,
Sugimoto
,
K.
, and
Yamashita
,
K.
, 1997, “
Amplitude-Dependent Stress Fiber Reorientation in Early Response to Cyclic Strain
,”
Exp. Cell Res.
0014-4827,
232
, pp.
191
191
.
17.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2006, “
A Bio-Chemo-Mechanical Model for Cell Contractility
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
, pp.
14015
14020
.
18.
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2007, “
A Model for the Contractility of the Cytoskeleton Including the Effects of Stress Fiber Formation and Dissociation
,”
Proc. R. Soc. London, Ser. A
1364-5021,
463
, pp.
787
815
.
19.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Watson
,
J. D.
, 2002,
Molecular Biology of the Cell
,
Garland
,
New York
.
20.
Huxley
,
A. F.
, 1957, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Biophys. Chem.
0096-4174,
7
, pp.
255
318
.
21.
Hill
,
A. V.
, 1938, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
0962-8452,
B126
, pp.
136
195
.
22.
Neidlinger-Wilke
,
C.
,
Grood
,
E. S.
,
Wang
,
J. H.
,
Brand
,
R. A.
, and
Claes
,
L.
, 2001, “
Cell Alignment Is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
0736-0266,
19
, pp.
286
293
.
23.
Ruwhof
,
C.
,
van Wamel
,
J. E. T.
,
Noordzij
,
L. A. W.
,
Aydin
,
S.
,
Harper
,
J. C. R.
, and
van der Laarse
,
A.
, 2001, “
Mechanical Stress Stimulates Phospholipase C Activity and Intracellular Calcium Ion Levels in Neonatal Rat Cardiomyocytes
,”
Cell Calcium
0143-4160,
29
, pp.
73
83
.
24.
Lammerding
,
J.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2004, “
Mechanotransduction in Cardiac Myocytes
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1015
, pp.
53
70
.
25.
Deshpande
,
V. S.
,
Mrksich
,
M.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2008, “
A Bio-Mechanical Basis for the Coupling of Focal Adhesion Formation and Cell Contractility
,”
J. Mech. Phys. Solids
, to be published.
26.
Tan
,
J. L.
,
Tien
,
J.
,
Pirone
,
D. M.
,
Gray
,
D. S.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
, 2003, “
Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
100
, pp.
1484
1489
.
27.
Ringach
,
D. L.
,
Shapley
,
R. M.
, and
Hawken
,
M. J.
, 2002, “
Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence
,”
J. Neurosci.
0270-6474,
22
, pp.
5639
5651
.
28.
Pathak
,
A.
,
Deshpande
,
V. S.
,
McMeeking
,
R. M.
, and
Evans
,
A. G.
, 2008, “
Analysis of Stress Fiber and Focal Adhesion Distributions of Cells on Micro-Patterned Substrates
,”
J. R. Soc., Interface
1742-5689,
5
(
22
), pp.
507
524
.
29.
Cornhill
,
J. F.
, and
Roach
,
M. R.
, 1974, “
Quantitative Method for Evaluation of Atherosclerotic Lesions
,”
Atherosclerosis
0021-9150,
20
, pp.
131
136
.
30.
Sinzinger
,
H.
,
Silberbauer
,
K.
, and
Auerswald
,
W.
, 1980, “
Quantitative Investigation of Sudanophilic Lesions Around the Aortic Ostia of Human Fetuses, Newborn and Children
,”
Blood Vessels
0303-6847,
17
, pp.
44
52
.
31.
Davies
,
P. F.
, 1995, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
0031-9333,
75
, pp.
519
560
.
You do not currently have access to this content.