A new method is presented for measuring joint kinematics by optimally matching modeled trajectories of geometric surface models of bones with cine phase contrast (cine-PC) magnetic resonance imaging data. The incorporation of the geometric bone models (GBMs) allows computation of kinematics based on coordinate systems placed relative to full 3-D anatomy, as well as quantification of changes in articular contact locations and relative velocities during dynamic motion. These capabilities are additional to those of cine-PC based techniques that have been used previously to measure joint kinematics during activity. Cine-PC magnitude and velocity data are collected on a fixed image plane prescribed through a repetitively moved skeletal joint. The intersection of each GBM with a simulated image plane is calculated as the model moves along a computed trajectory, and cine-PC velocity data are sampled from the regions of the velocity images within the area of this intersection. From the sampled velocity data, the instantaneous linear and angular velocities of a coordinate system fixed to the GBM are estimated, and integration of the linear and angular velocities is used to predict updated trajectories. A moving validation phantom that produces motions and velocity data similar to those observed in an experiment on human knee kinematics was designed. This phantom was used to assess cine-PC rigid body tracking performance by comparing the kinematics of the phantom measured by this method to similar measurements made using a magnetic tracking system. Average differences between the two methods were measured as 2.82 mm rms for anterior∕posterior tibial position, and 2.63 deg rms for axial rotation. An inter-trial repeatability study of human knee kinematics using the new method produced rms differences in anterior∕posterior tibial position and axial rotation of 1.44 mm and 2.35 deg. The performance of the method is concluded to be sufficient for the effective study of kinematic changes caused to knees by soft tissue injuries.

1.
Lerner
,
A. L.
,
Tamez-Pena
,
J. G.
,
Houck
,
J. R.
,
Yao
,
J.
,
Harmon
,
H. L.
,
Salo
,
A. D.
, and
Totterman
,
S. M.
, 2003, “
The Use of Sequential MR Image Sets for Determining Tibiofemoral Motion: Reliability of Coordinate Systems and Accuracy of Motion Tracking Algorithm
,”
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
246
253
.
2.
Hirsch
,
B. E.
,
Udupa
,
J. K.
, and
Samarasekera
,
S.
, 1996, “
New Method of Studying Joint Kinematics from Three-Dimensional Reconstructions of MRI Data
,”
J. Am. Podiatr Med. Assoc.
8750-7315,
86
(
1
), pp.
4
15
.
3.
Freeman
,
M. A.
, and
Pinskerova
,
V.
, 2003, “
The Movement of the Knee Studied by Magnetic Resonance Imaging
,”
Clin. Orthop. Relat. Res.
0009-921X, (
410
), pp.
35
43
.
4.
Li
,
G.
,
Wuerz
,
T. H.
, and
DeFrate
,
L. E.
, 2004, “
Feasibility of Using Orthogonal Fluoroscopic Images to Measure in Vivo Joint Kinematics
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
314
318
.
5.
Mahfouz
,
M. R.
,
Traina
,
S. M.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
, 2003, “
In Vivo Determination of Knee Kinematics in Patients With a Hamstring or Patellar Tendon ACL Graft
,”
Struct Surv.
0263-080X,
16
(
4
), pp.
197
202
.
6.
Manal
,
K.
,
McClay Davis
,
I.
,
Galinat
,
B.
, and
Stanhope
,
S.
, 2003, “
The Accuracy of Estimating Proximal Tibial Translation During Natural Cadence Walking: Bone Vs. Skin Mounted Targets
,“
Clin. Biomech. (Bristol, Avon)
0268-0033,
18
(
2
), pp.
126
131
.
7.
Tashman
,
S.
, and
Anderst
,
W.
, 2003, ”
In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,“
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
238
245
.
8.
Komistek
,
R. D.
,
Dennis
,
D. A.
, and
Mahfouz
,
M.
, 2003, ”
In Vivo Fluoroscopic Analysis of the Normal Human Knee
,“
Clin. Orthop. Relat. Res.
0009-921X, (
410
), pp.
69
81
.
9.
Pelc
,
N. J.
,
Herfkens
,
R. J.
,
Shimakawa
,
A.
, and
Enzmann
,
D. R.
, 1991, ”
Phase Contrast Cine Magnetic Resonance Imaging
,“
Magn. Reson. Q.
0899-9422,
7
(
4
), pp.
229
254
.
10.
Sheehan
,
F. T.
,
Zajac
,
F. E.
, and
Drace
,
J. E.
, 1998, “
Using Cine Phase Contrast Magnetic Resonance Imaging to Non-Invasively Study in Vivo Knee Dynamics
,”
J. Biomech.
0021-9290,
31
(
1
), pp.
21
26
.
11.
Zhu
,
Y.
,
Drangova
,
M.
, and
Pelc
,
N. J.
, 1996, “
Fourier Tracking of Myocardial Motion Using cine-PC Data
,”
Magn. Reson. Med.
0740-3194,
35
(
4
), pp.
471
480
.
12.
Rebmann
,
A. J.
, and
Sheehan
,
F. T.
, 2003, “
Precise 3D Skeletal Kinematics Using Fast Phase Contrast Magnetic Resonance Imaging
,”
J. Magn. Reson Imaging
1053-1807,
17
(
2
), pp.
206
213
.
13.
Kremer
,
J. R.
,
Mastronarde
,
D. N.
, and
McIntosh
,
J. R.
, 1996, “
Computer Visualization of Three-Dimensional Image Data Using Imod
,”
J. Struct. Biol.
1047-8477,
116
(
1
), pp.
71
76
.
14.
Geiger
,
B.
, 1993, “
Three-Dimensional Modeling of Human Organs and Its Application to Diagnosis and Surgical Planning
.” 2105,
Institut National de Recherche en Informatique et Automatique (France)
, Sophia Antipolis.
15.
Craig
,
J. J.
, 1989,
Introduction to Robotics: Mechanics and Control
, 2nd ed.,
Addison-Wesley
, New York, pp.
25
31
.
16.
Schroeder
,
W.
,
Martin
,
K.
, and
Lorensen
,
W.
, 1997,
The Visualization Toolkit
,
Prentice Hall, Inc.
, Upper Saddle River, NJ.
17.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1988,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed.,
Cambridge University Press
, Cambridge, MA, pp.
305
308
.
18.
Kahaner
,
D.
,
Moler
,
C.
, and
Nash
,
S.
, 1989,
Numerical Methods and Software
, 1st ed.,
Prentice-Hall, Inc.
, Englewood Cliffs, New Jersey, pp.
285
286
.
19.
Ishii
,
Y.
,
Terajima
,
K.
,
Terashima
,
S.
, and
Koga
,
Y.
, 1997, “
Three-Dimensional Kinematics of the Human Knee with Intracortical Pin Fixation
,”
Clin. Orthop. Relat. Res.
0009-921X,
150
(343), pp.
144
50
.
20.
Hallen
,
L. G.
, and
Lindahl
,
O.
, 1966, “
The “Screw-Home” Movement in the Knee-Joint
,”
Acta Orthop. Scand.
0001-6470,
37
(
1
), pp.
97
106
.
21.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
J. Biomech. Eng.
0148-0731,
105
(
2
), pp.
136
144
.
22.
Lingamneni
,
A.
,
Hardy
,
P. A.
,
Powell
,
K. A.
,
Pelc
,
N. J.
, and
White
,
R. D.
, 1995, “
Validation of Cine Phase-Contrast MR Imaging for Motion Analysis
,”
J. Magn. Reson Imaging
1053-1807,
5
(
3
), pp.
331
338
.
23.
Pelc
,
N. J.
,
Sommer
,
F. G.
,
Li
,
K. C.
,
Brosnan
,
T. J.
,
Herfkens
,
R. J.
, and
Enzmann
,
D. R.
, 1994, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Q.
0899-9422,
10
(
3
), pp.
125
147
.
24.
Almekinders
,
L. C.
, and
Chiavetta
,
J. B.
, 2001, “
Tibial Subluxation in Anterior Cruciate Ligament-Deficient Knees: Implications for Tibial Tunnel Placement
,”
Arthroscopy
0749-8063,
17
(
9
), pp.
960
962
.
25.
Franklin
,
J. L.
,
Rosenberg
,
T. D.
,
Paulos
,
L. E.
, and
France
,
E. P.
, 1991, “
Radiographic Assessment of Instability of the Knee Due to Rupture of the Anterior Cruciate Ligament. A Quadriceps-Contraction Technique
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
73
(
3
), pp.
365
372
.
26.
Gross
,
M. T.
,
Tyson
,
A. D.
, and
Burns
,
C. B.
, 1993, “
Effect of Knee Angle and Ligament Insufficiency on Anterior Tibial Translation During Quadriceps Muscle Contraction: A Preliminary Report
,”
J. Orthop. Sports Phys. Ther.
0190-6011,
17
(
3
), pp.
133
143
.
27.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lindsey
,
C.
,
Ozhinsky
,
E.
,
Lu
,
Y.
, and
Majumdar
,
S.
, 2003, “
Magnetic Resonance Imaging of Patellofemoral Kinematics with Weight-Bearing
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
85-A
(
12
), pp.
2419
2424
.
You do not currently have access to this content.