A tetrapolar method to measure electrical conductivity of cartilage and bone, and to estimate the thickness of articular cartilage attached to bone, was developed. We determined the electrical conductivity of humeral head bovine articular cartilage and subchondral bone from a 1- to 2-year-old steer to be 1.14±0.11S/m(mean±sd,n=11) and 0.306±0.034S/m,(mean±sd,n=3), respectively. For a 4-year-old cow, articular cartilage and subchondral bone electrical conductivity were 0.88±0.08S/m(mean±sd,n=9) and 0.179±0.046S/m(mean±sd,n=3), respectively. Measurements on slices of cartilage taken from different distances from the articular surface of the steer did not reveal significant depth-dependence of electrical conductivity. We were able to estimate the thickness of articular cartilage with reasonable precision (<20% error) by injecting current from multiple electrode pairs with different inter-electrode distances. Requirements for the precision of this method to measure cartilage thickness include the presence of a distinct layer of calcified cartilage or bone with a much lower electrical conductivity than that of uncalcified articular cartilage, and the use of inter-electrode distances of the current injecting electrodes that are on the order of the cartilage thickness. These or similar methods present an attractive approach to the non-destructive determination of cartilage thickness, a parameter that is required in order to estimate functional properties of cartilage attached to bone, and evaluate the need for therapeutic interventions in arthritis.

1.
Roth
,
V.
, and
Mow
,
V. C.
,
1980
, “
The Intrisic Tensile Behavior of the Matrix of Bovine Articular Cartilage and its Variation with Age
,”
J. Bone Jt. Surg.
,
62
, pp.
1102
1117
.
2.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1988
, “
Electrokinetic Micromodel of Extracellular Matrix and Other Polyelectrolyte Networks
,”
Physicochemical Hydrodynamics
,
10
(
4
), pp.
517
539
.
3.
Soulhat
,
J.
,
Buschmann
,
M. D.
, and
Shirazi-Adl
,
A.
,
1999
, “
A Fibril-Network Reinforced Biphasic Model of Cartilage in Unconfined Compression
,”
J. Biomech. Eng.
,
121
, pp.
340
347
.
4.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics-I Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
, pp.
615
627
.
5.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics II: A Continuum Model of Cartilage Electrokinetics and Correlation with Experiments
,”
J. Biomech.
,
20
, pp.
629
639
.
6.
Frank
,
E. H.
,
Grodzinsky
,
A. J.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1987
, “
Streaming Potentials: A Sensitive Index of Enzymatic Degradation in Articular Cartilage
,”
J. Orthop. Res.
,
5
, pp.
497
508
.
7.
Le´gare´
A.
,
Garon
,
M.
,
Guardo
,
R.
,
Savard
,
P.
,
Poole
,
A. R.
, and
Buschmann
,
M. D.
,
2002
, “
Detection and Analysis of Cartilage Degeneration by Spatially Resolved Streaming Potentials
,”
J. Orthop. Res.
,
20
(
4
), pp.
819
826
.
8.
Maroudas
,
A.
,
1968
, “
Physicochemical Properties of Cartilage in Light of Ion Exchange Theory
,”
Biophys. J.
,
8
, pp.
575
594
.
9.
Grodzinsky
,
A. J.
,
1983
, “
Electromechanical and Physicochemical Properties of Connective Tissue
,”
CRC Critical Reviews in Biomed. Eng.
,
9, 2
, pp.
133
199
.
10.
Hasegawa
,
I.
,
Kuriki
,
S.
,
Matsuno
,
S.
, and
Matsumoto
,
G.
,
1983
, “
Dependence of Electrical Conductivity on Fixed Charge Density in Articular Cartilage
,”
Clinical Orthop. Res.
,
177
, pp.
283
288
.
11.
Gu
,
W. Y.
, and
Justiz
,
M. A.
,
2002
, “
Apparatus for measuring the swelling dependent electrical conductivity of charged hydrated soft tissues
,”
J. Biomech. Eng.
,
124
(
6
),
790
793
.
12.
Das
,
D. P.
, and
Webster
,
J. G.
,
1980
, “
Defibrillation Recovery Curves For Different Electrode Materials
,”
IEEE Trans. Biomed. Eng.
,
BME-27
, pp.
230
233
.
13.
Neuman, M. R., 1998, “Biopotential electrodes,” Medical Instrumentation: Application and Design, 3rd ed., J. G. Webster, eds, Wiley, New York, pp. 745–757.
14.
Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1990, Applied Geophysics, 2nd ed, Cambridge University Press, England, Chap. 6
15.
Rush
,
S.
,
1962
, “
Method of Measuring the Resistivity of Anisotropic Conduction Media in situ
,”
J. Res. Natl. Bur. Stand., Sect. C
,
66C
(
3
),
217
222
.
16.
Keller, G. V., and Frischknecht, F. C., 1966, Electrical Methods in Geophysical Prospecting, Oxford, New York: Pergamon.
17.
Smits
,
F. M.
,
1958
, “
Measurement of Sheet Resistivities with the Four-Point Probe
,”
Bell Syst. Tech. J.
,
37
(
3
), pp.
711
718
.
18.
Valdes, L. B., 1954, “Resistivity Measurement on Germanium for Transistors,” Proceedings of the I.R.E., 42, pp. 420–427.
19.
Sze, S. M., 1985, “Carrier Transport Phenomena,” Semiconductor Devices, Physics and Tech., John Wiley & Sons, pp. 183–190.
20.
Rush
,
S.
,
Abildskov
,
J. A.
, and
McFee
,
R. R.
,
1963
, “
Resistivity of Body Tissues at Low Frequencies
,”
Circ. Res.
,
12
, pp.
40
50
.
21.
Brago`s, R., Riu, P., Warren, M., Tresa`nchez, M., Carren˜o, A., and Cinca, J., 1996, “Changes in Myocardial Impedance Spectrum During Acute Ischemia in the in-situ Pig Heart,” Proc.-18th Annual international Conf.-IEEE Eng. Med. Biol. Soc., p. 414.
22.
Le Guyader, P., Savard, P., and Trelles, F., 1997, “Measurement of Myocardial Conductivities with a Four-Electrode Technique in the Frequency Domain,” Proc.-19th Intern. Conf.-IEE/EMBS, pp. 2448–2449.
23.
Steendijk
,
P.
,
Mur
,
G.
,
Van de Velde
,
E. T.
, and
Baan
,
J.
,
1993
, “
The Four-Electrode Resistivity Technique in Anisotropic Media: Theoretical Analysis and Application on Myocardial Tissue in vivo
,”
IEEE Trans. Biomed. Eng.
,
31
, pp.
447
481
.
24.
Jurvelin
,
J. S.
,
Ra¨sa¨nen
,
T.
,
Kolmonen
,
P.
, and
Lyyra
,
T.
,
1995
, “
Comparison of Optical, Needle Probe and Ultrasonic Techniques for the Measurement of Articular Cartilage Thickness
,”
J. Biomech.
,
28, 2
, pp.
231
235
.
25.
Iagnocco
,
A.
,
Coari
,
G.
, and
Zoppini
,
A.
,
1992
, “
Sonographic Evaluation of Femoral Condylar Cartilage in Osteoarthritis and Rheumatoid Arthritis,”
Scand. J. Rheumatol.
,
21
, pp.
201
203
.
26.
Modest
,
V. E.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
,
1989
, “
Optical Verification of a Technique for in situ Ultrasonic Measurement of Articular Cartilage
,”
J. Biomech.
,
22
, pp.
171
176
.
27.
To¨yra¨s
,
J.
,
Lyyra-Laitinen
,
T.
,
Niinima¨ki
,
M.
,
Lindgren
,
R.
,
Nieminen
,
M. T.
,
Kiviranta
,
I.
, and
Jurvelin
,
J. S.
,
2001
, “
Estimation of the Young’s Modulus of Articular Cartilage Using an Arthroscopic Indentation Instrument and Ultrasonic Measurement of Tissue Thickness
,”
J. Biomech.
,
34
, pp.
251
256
.
28.
Ra¨sa¨nen
,
T.
,
Jurvelin
,
J.
, and
Helminen
,
H. J.
,
1991
, “
Indentation and Shear Tests of Bovine Knee Articular Cartilage
,”
Biomech. Sem.
,
5
, pp.
22
28
.
29.
Mow
,
V. C.
,
Gibbs
,
M. C.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Athanasiou
,
K. A.
,
1989
, “
Biphasic Indentation of Articular Cartilage–II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
, pp.
853
861
.
30.
Jurvelin
,
J.
,
Kiviranta
,
I.
,
Arokoski
,
J.
,
Tammi
,
M.
, and
Helminen
,
H. J.
,
1987
, “
Indentation Study of the Biomechanical Properties of Articular Cartilage in the Canine Knee
,”
Eng. Med.
,
16
, pp.
15
22
.
31.
Hayes
,
W. C.
,
Keer
,
L. M.
,
Herrmann
,
G.
, and
Mockros
,
L. F.
,
1972
, “
A Mathematical Analysis for Indentation Tests of Articular Cartilage
,”
J. Biomech.
,
5
, pp.
541
551
.
32.
Sachs
,
J. R.
, and
Grodzinsky
,
A. J.
,
1995
, “
Electromechanical Spectroscopy of Cartilage Using a Surface Probe with Applied Mechanical Displacement
,”
J. Biomech.
,
28, 8
, pp.
963
976
.
33.
Dumont
,
J.
,
Ionescu
,
M.
,
Reiner
,
A.
,
Poole
,
A. R.
,
Tran-khanh
,
N.
,
Hoemann
,
C. D.
,
McKee
,
M. D.
, and
Buschmann
,
M. D.
,
1999
, “
Mature full-thickness articular cartilage explants attached to bone are physiologically stable over long-term culture in serum-free media
,”
Connect. Tissue Res.
,
40
, pp.
259
272
.
34.
Garon
,
M.
,
Le´gare´
A.
,
Guardo
,
R.
,
Savard
,
P.
, and
Buschmann
,
M. D.
,
2002
Streaming Potentials Maps are Spatially Resolved Indicators of Amplitude, Frequency and Ionic Strength Dependant Responses of Articular Cartilage to Load
,”
J. Biomech.
,
35
, pp.
207
216
.
35.
Helfferich, F., 1962, “Ion Exchange.” McGraw-Hill, New York.
36.
Chammas
,
P.
,
Federspiel
,
W. J.
, and
Eisenberg
,
S. R.
,
1994
, “
A Microcontinuum Model of Electrokinetic Coupling in the Extracellular Matrix: Perturbation Formulation and Solution
,”
J. Colloid Interface Sci.
,
168
, pp.
526
538
.
You do not currently have access to this content.