The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, β, and elasticity in response to an increment in pressure, Einc-p) and a novel elasticity parameter in response to smooth muscle cell (SMC) activation, Einc-a, were calculated. β for all passive MCAs was 9.11±1.07 but could not be calculated for active vessels. The incremental stiffness increased significantly with pressure in passive vessels; Einc-p106dynes/cm2 increased from 5.6±0.5 at 75 mmHg to 14.7±2.4 at 125 mmHg, (p<0.05). In active vessels, Einc-p106dynes/cm2 remained relatively constant (5.5±2.4 at 75 mmHg and 6.2±1.0 at 125 mmHg). Einc-a106dynes/cm2 increased significantly with pressure (from 15.1±2.3 at 75 mmHg to 49.4±12.6 at 125 mmHg, p<0.001), indicating a greater contribution of SMC activity to vessel wall stiffness at higher pressures.

1.
Hayashi, K., Stergiopulos, N., Meister, J.-J., Greenwald, S. E., and Rachev, A., 2001, “Techniques in the Determination of the Mechanical Properties and Constitutive Laws of Arterial Walls,” in Cardiovascular Techniques—Biomechanical Systems Techniques and Applications, vol. 2, C. Leondes, Ed., New York: CRC Press.
2.
Brayden
,
J. E.
,
Halpern
,
W.
, and
Brann
,
L. R.
,
1983
, “
Biochemical and Mechanical Properties of Resistance Arteries From Normotensive and Hypertensive Rats
,”
Hypertension
,
5
, pp.
17
25
.
1.
Johansson
,
B.
,
1989
, “
Myogenic Tone and Reactivity: Definitions Based on Muscle Physiology
,”
J. Hypertens., Suppl.
7
, pp.
5
58
;
2.
discussion S9.
1.
Osol
,
G.
,
Osol
,
R.
, and
Halpern
,
W.
,
1989
, “
Pre-Existing Level of Tone is an Important Determinant of Cerebral Artery Autoregulatory Responsiveness
,”
J. Hypertens. Suppl.
,
7
, pp.
S67–S69
S67–S69
.
2.
Osol
,
G.
, and
Halpern
,
W.
,
1985
, “
Myogenic Properties of Cerebral Blood Vessels From Normotensive and Hypertensive Rats
,”
Am. J. Physiol.
,
249
, pp.
H914–H921
H914–H921
.
1.
Mellander
,
S.
,
1989
, “
Functional Aspects of Myogenic Vascular Control
,”
J. Hypertens. Suppl.
,
7
, pp.
S21–S30
S21–S30
;
2.
discussion S31.
1.
Goedhard
,
W. J.
,
Knoop
,
A. A.
, and
Westerhof
,
N.
,
1973
, “
The Influence of Vascular Smooth Muscle Contraction on Elastic Properties of Pig’s Thoracic Aortae
,”
Acta Cardiol.
,
28
, pp.
415
430
.
2.
Hayashi
,
K.
,
Nagasawa
,
S.
,
Naruo
,
Y.
,
Okumura
,
A.
,
Moritake
,
K.
, and
Handa
,
H.
,
1980
, “
Mechanical Properties of Human Cerebral Arteries
,”
Biorheology
,
17
, pp.
211
218
.
3.
Hudetz
,
A. G.
,
1979
, “
Incremental Elastic Modulus for Orthotropic Incompressible Arteries
,”
J. Biomech.
,
12
, pp.
651
655
.
4.
Dobrin
,
P. B.
, and
Rovick
,
A. A.
,
1969
, “
Influence of Vascular Smooth Muscle on Contractile Mechanics and Elasticity of Arteries
,”
Am. J. Physiol.
,
217
, pp.
1644
1651
.
5.
Fridez
,
P.
,
Makino
,
A.
,
Miyazaki
,
H.
,
Meister
,
J.-J.
,
Hayashi
,
K.
, and
Stergiopulos
,
N.
,
2001
, “
Short-Term Biomechanical Adaptation of the Rat Carotid to Acute Hypertension: Contribution of Smooth Muscle
,”
Ann. Biomed. Eng.
,
29
, pp.
26
34
.
6.
Hajdu
,
M. A.
, and
Baumbach
,
G. L.
,
1994
, “
Mechanics of Large and Small Cerebral Arteries in Chronic Hypertension
,”
Am. J. Physiol.
,
266
, pp.
H1027–H1033
H1027–H1033
.
7.
Cipolla
,
M. J.
,
Lessov
,
N.
,
Hammer
,
E. S.
, and
Curry
,
A. B.
,
2001
, “
Threshold Duration of Ischemia for Myogenic Tone in Middle Cerebral Arteries: Effect on Vascular Smooth Muscle Actin
,”
Stroke
,
32
, pp.
1658
1664
.
8.
Osol
,
G.
,
Laher
,
I.
, and
Cipolla
,
M.
,
1991
, “
Protein Kinase C Modulates Basal Myogenic Tone in Resistance Arteries From the Cerebral Circulation
,”
Circ. Res.
,
68
, pp.
359
367
.
9.
Wiederhielm
,
C. A.
,
1963
, “
Continuous Recording of Arteriolar Dimensions With a Television Microscope
,”
Am. J. Physiol.
,
18
, pp.
1041
1042
.
10.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., New York: Springer-Verlag.
11.
Carew
,
T. E.
,
Vaishnav
,
R. N.
, and
Patel
,
D. J.
,
1968
, “
Compressibility of the Arterial Wall
,”
Circ. Res.
,
23
, pp.
61
68
.
12.
Timoshenko, S., 1934, Theory of Elasticity, First ed., New York: McGraw-Hill Book Company, Inc.
13.
Hayashi
,
K.
,
Takamizawa
,
K.
,
Nakamura
,
T.
,
Kato
,
T.
, and
Tsushima
,
N.
,
1987
, “
Effects of Elastase on the Stiffness and Elastic Properties of Arterial Walls in Cholesterol-Fed Rabbits
,”
Atherosclerosis
,
66
, pp.
259
267
.
14.
Hayashi
,
K.
,
Handa
,
H.
,
Nagasawa
,
S.
,
Okumura
,
A.
, and
Moritake
,
K.
,
1980
, “
Stiffness and Elastic Behavior of Human Intracranial and Extracranial Arteries
,”
J. Biomech.
,
13
, pp.
175
184
.
15.
Hudetz
,
A. G.
,
Mark
,
G.
,
Kovach
,
A. G.
,
Kerenyi
,
T.
,
Fody
,
L.
, and
Monos
,
E.
,
1981
, “
Biomechanical Properties of Normal and Fibrosclerotic Human Cerebral Arteries
,”
Atherosclerosis
,
39
, pp.
353
365
.
16.
Cipolla
,
M. J.
, and
Curry
,
A. B.
,
2002
, “
Middle Cerebral Artery Function After Stroke: The Threshold Duration of Reperfusion for Myogenic Activity
,”
Stroke
,
33
(
8
),
2094
2099
.
17.
Cipolla
,
M. J.
,
McCall
,
A. L.
,
Lessov
,
N.
, and
Porter
,
J. M.
,
1997
, “
Reperfusion Decreases Myogenic Reactivity and Alters Middle Cerebral Artery Function After Focal Cerebral Ischemia in Rats
,”
Stroke
,
28
(
1
),
176
180
.
1.
Cipolla
,
M. J.
,
Porter
,
J. M.
, and
Osol
,
G.
,
1997
, “
High Glucose Concentrations Dilate Cerebral Arteries and Diminish Myogenic Tone Through an Endothelial Mechanism
,”
Stroke
,
28
(
2
),
405
410
;
2.
discussion 410–411.
1.
Lagaud
,
G. J.
,
Skarsgard
,
P. L.
,
Laher
,
I.
, and
van Breemen
,
C.
,
1999
, “
Heterogeneity of Endothelium-Dependent Vasodilation in Pressurized Cerebral and Small Mesenteric Resistance Arteries of the Rat
,”
J. Pharmacol. Exp. Ther.
,
290
(
2
),
832
839
.
2.
Geary
,
G. G.
,
Krause
,
D. N.
, and
Duckles
,
S. P.
,
2000
, “
Estrogen Reduces Mouse Cerebral Artery Tone Through Endothelial NOS- and Cyclooxygenase-Dependent Mechanisms
,”
Am. J. Phys-Heart-Circ. Phy.
279
(
2
),
H511–H519
H511–H519
.
3.
Thorin-Trescases
,
N.
, and
Bevan
,
J. A.
,
1998
, “
High Levels of Myogenic Tone Antagonize the Dilator Response to Flow of Small Rabbit Cerebral Arteries
,”
Stroke
,
29
, pp.
1194
1201
.
4.
Zanchi
,
A.
,
Stergiopulos
,
N.
,
Brunner
,
H. R.
, and
Hayoz
,
D.
,
1998
, “
Differences in the Mechanical Properties of the Rat Carotid Artery in Vivo, in Situ and in Vitro
,”
Hypertension
,
32
, pp.
180
185
.
You do not currently have access to this content.