The Orientation of trabecular bone specimens for mechanical testing must be carefully controlled. A method for accurately preparing on-axis cylindrical specimens using high-resolution micro-CT imaging was developed. Sixteen cylindrical specimens were prepared from eight bovine tibiae. High-resolution finite element models were generated from micro-CT images of parallelepipeds and used to determine the principal material coordinate system of each parallelepiped. A cylindrical specimen was then machined with a diamond coring bit. The resulting specimens were scanned again to evaluate the orientation. The average deviation between the principal fabric orientation and the longitudinal axis of the cylindrical specimen was only 4.70±3.11°.

1.
Hodgskinson, R., and Currey, J. D., 1990, “The Effect of Variation in Structure on the Young’s Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material,” Proceedings of the Institution of Mechanical Engineers [part 4], 204, pp. 115–121.
2.
Ciarelli
,
M. J.
,
Goldstein
,
S. A.
,
Kuhn
,
J. L.
,
Cody
,
D. D.
, and
Brown
,
M. B.
,
1991
, “
Evaluation of Orthogonal Mechanical Properties and Density of Human Trabecular Bone From the Major Metaphyseal Regions With Materials Testing and Computed Tomography
,”
J. Orthop. Res.
,
9
, pp.
674
682
.
3.
Galante
,
J.
,
Rostoker
,
W.
, and
Ray
,
R. D.
,
1970
, “
Physical Properties of Trabecular Bone
,”
Calcif. Tissue Res.
,
5
, pp.
236
246
.
4.
Turner
,
C. H.
,
Cowin
,
S. C.
,
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Rice
,
J. C.
,
1990
, “
The Fabric Dependence of the Orthotropic Elastic Constants of Cancellous Bone
,”
J. Biomech.
,
23
, pp.
549
561
.
5.
Turner
,
C. H.
, and
Cowin
,
S. C.
,
1988
, “
Errors Introduced by Off-Axis Measurements of the Elastic Properties of Bone
,”
J. Biomech. Eng.
,
110
, pp.
213
215
.
6.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annual Review of Biomedical Engineering
,
3
, pp.
307
333
.
7.
Keaveny
,
T. M.
,
Guo
,
X. E.
,
Wachtel
,
E. F.
,
McMahon
,
T. A.
, and
Hayes
,
W. C.
,
1994
, “
Trabecular Bone Exhibits Fully Linear Elastic Behavior and Yields at Low Strains
,”
J. Biomech.
,
27
, pp.
1127
1136
.
8.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Burghardt
,
A. J.
, and
Keaveny
,
T. M.
,
2001
, “
Sensitivity of Damage Predictions to Tissue Level Yield Properties and Apparent Loading Conditions
,”
J. Biomech.
,
34
, pp.
699
706
.
9.
Morgan
,
E. F.
, and
Keaveny
,
T. M.
,
2001
, “
Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site
,”
J. Biomech.
,
34
, pp.
569
577
.
10.
Simmons
,
C. A.
, and
Hipp
,
J. A.
,
1997
, “
Method-Based Differences in the Automated Analysis of the Three-Dimensional Morphology of Trabecular Bone
,”
J. Bone Miner. Res.
,
12
, pp.
942
947
.
11.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
,
1994
, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
,
27
, pp.
433
444
.
12.
Van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
,
1995
, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models
,”
J. Biomech.
,
28
, pp.
69
81
.
13.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1998
, “
Relationships Between Bone Morphology and Bone Elastic Properties Can Be Accurately Quantified Using High-Resolution Computer Reconstructions
,”
J. Orthop. Res.
,
16
, pp.
23
28
.
14.
Sedlin
,
E. D.
,
1965
, “
A Rheologic Model for Cortical Bone: A Study of the Physical Properties of Human Femoral Samples
,”
Acta Orthop. Scand. Suppl.
,
83
, pp.
1
77
.
15.
Linde
,
F.
, and
Sorensen
,
H. C.
,
1993
, “
The Effect of Different Storage Methods on the Mechanical Properties of Trabecular Bone
,”
J. Biomech.
,
26
, pp.
1249
1252
.
16.
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
,
1996
, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
,
29
, pp.
1653
1657
.
17.
Odgaard
,
A.
,
Kabel
,
J.
,
Van Rietbergan
,
B.
,
Dalstra
,
M.
, and
Huiskes
,
R.
,
1997
, “
Fabric and Elastic Principal Directions of Cancellous Bone Are Closely Related
,”
J. Biomech.
,
30
, pp.
487
495
.
18.
Zysset
,
P. K.
,
Goulet
,
R. W.
, and
Hollister
,
S. J.
,
1998
, “
A Global Relationship Between Trabecular Bone Morphology and Homogenized Elastic Properties
,”
J. Biomech. Eng.
,
120
, pp.
640
646
.
19.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
,
1999
, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
J. Biomech. Eng.
,
121
, pp.
629
635
.
20.
Pistoia
,
W.
,
Van Rietbergen
,
B.
,
Laib
,
A.
, and
Ru¨egsegger
,
P.
,
2001
, “
High-Resolution Three-Dimensional-pQCT Images Can Be an Adequate Basis for In-Vivo μFE Analysis of Bone
,”
J. Biomech. Eng.
,
123
, pp.
176
183
.
21.
Kothari
,
M.
,
Keaveny
,
T. M.
,
Lin
,
J. C.
,
Newitt
,
D. C.
,
Genant
,
H. K.
, and
Majumdar
,
S.
,
1998
, “
Impact of Spatial Resolution on the Prediction of Trabecular Architecture Parameters
,”
Bone (N.Y.)
,
22
, pp.
437
443
.
22.
Tennyson
,
N. C.
,
Ewert
,
R.
, and
Niranjan
,
V.
,
1972
, “
Dynamic Viscoelastic Response of Bone
,”
Exp. Mech.
,
12
, p.
502
502
.
23.
Martin, R. B., and Sharkey, N. A., 2001, “Mechanical Effects of Postmortem Changes, Preservation, and Allograft Bone Treatments,” in Bone Mechanics, Cowin, S. C., Editor, CRC Press, New York.
24.
Rimnac
,
C. M.
,
Petko
,
A. A.
,
Santner
,
T. J.
, and
Wright
,
T. M.
,
1993
, “
The Effect of Temperature, Stress and Microstructure on the Creep of Compact Bovine Bone
,”
J. Biomech.
,
26
, pp.
219
228
.
You do not currently have access to this content.