The effect of mineral volume fraction on the tensile mechanical properties of cortical bone tissue is investigated by theoretical and experimental means. The mineral content of plexiform, bovine bone was lowered by 18% and 29% by immersion in fluoride solutions for 3 days and 12 days, respectively. The elastic modulus, yield strength and ultimate strength of bone tissue decreased, while the ultimate strain increased with a decrease in mineral content. The mechanical behavior of bone tissue was modeled by using a micro-mechanical shear lag theory consisting of overlapped mineral platelets reinforcing the organic matrix. The decrease in yield stress, by the 0.002 offset method, of the fluoride treated bones were matched in the theoretical curves by lowering the shear yield stress of the organic matrix. The failure criterion used was based on failure stresses determined from a failure envelope (Mohr’s circle), which was constructed using experimental data. It was found that the model predictions of elastic modulus got worse with a decrease in mineral content (being 7.9%, 17.2% and 33.0% higher for the control, 3-day and 12-day fluoride-treated bones). As a result, the developed theory could not fully predict the yield strain of bones with lowered mineral content, being 12.9% and 21.7% lower than the experimental values. The predicted ultimate stresses of the bone tissues with lower mineral contents were within ±10% of the experimental values while the ultimate strains were 12.7% and 26.3% lower than the experimental values. Although the model developed in this study did not take into account the presence of hierarchical structures, voids, orientation of collagen molecules and micro cracks, it still indicated that the mechanical properties of the organic matrix depend on bone mineral content.

1.
Currey
,
J. D.
,
1984
, “
Effects of Differences in Mineralization on the Mechanical Properties of Bone
,”
Philos. Trans. R. Soc. London
,
B304
, pp.
509
518
.
2.
Currey
,
J. D.
,
1990
, “
Physical Characteristics Affecting the Tensile Failure Properties of Compact Bone
,”
J. Biomech.
,
23
(
8
), pp.
837
844
.
3.
Martin
,
R. B.
, and
Ishida
,
J.
,
1989
, “
The Relative Effects of Collagen Fiber Orientation, Porosity, Density, and Mineralization on Bone Strength
,”
J. Biomech.
,
22
(
5
), pp.
419
426
.
4.
Martin
,
R. B.
, and
Boardman
,
D. L.
,
1993
, “
The Effects of Collagen Fiber Orientation, Porosity, Density and Mineralization on Bovine Cortical Bone Bending Properties
,”
J. Biomech.
,
26
(
9
), pp.
1047
1054
.
5.
Broz
,
J. J.
,
Simske
,
S. J.
, and
Greenberg
,
A. R.
,
1995
, “
Material and Compositional Properties of Selectively Demineralized Cortical Bone
,”
J. Biomech.
,
28
, pp.
1357
1368
.
6.
Sasaki
,
N.
, and
Yoshikawa
,
M.
,
1993
, “
Stress Relaxation in Native and EDTA-Treated Bone as a Function of Mineral Content
,”
J. Biomech.
,
26
(
1
), pp.
77
83
.
7.
Shah
,
K. M.
,
Goh
,
J. C. H.
,
Karunanithy
,
R.
,
Low
,
S. L.
,
Das
,
D. S.
, and
Bose
,
K.
,
1995
, “
Effect of Decalcification on Bone Mineral Content and Bending Strength of Feline Femur
,”
Calcif. Tissue Int.
,
56
, pp.
78
82
.
8.
Burstein
,
A. H.
,
Zika
,
J. M.
,
Heipl
,
K. G.
, and
Klein
,
L.
,
1975
, “
Contribution of Collagen and Mineral to the Elastic-Plastic Properties of Bone
,”
J. Bone Jt. Surg.
,
58-A
, pp.
956
961
.
9.
Kotha
,
S. P.
,
Walsh
,
W. R.
,
Pan
,
Y.
, and
Guzelsu
,
N.
,
1998
, “
Varying the Mechanical Properties of Bone Tissue by Changing the Amount of its Structurally Effective Bone Mineral Content
,”
Biomed. Mater. Eng.
,
8
, pp.
321
334
.
10.
Kotha
,
S. P.
,
DePaula
,
C. A.
,
Koike
,
K.
,
Pan
,
Y.
,
Ohno
,
M.
,
Rangarajan
,
S.
, and
Guzelsu
,
N.
,
2002
, “
Controlled Dissolution from Intact Bones with In-vitro Fluoride Ion Treatments
,”
Connect. Tissue Res.
,
43
(
1
), pp.
8
21
.
11.
DePaula
,
C. A.
,
Absornson
,
C.
,
Pan
,
Y.
,
Kotha
,
S. P.
,
Koike
,
K.
, and
Guzelsu
,
N.
,
2002
, “
Changing the Structurally Effective Mineral Content of Bone with In-vitro Fluoride Treatment
,”
J. Bone Jt. Surg.
,
35
(
3
), pp.
355
361
.
12.
Christoffersen
,
J.
,
Christoffersen
,
M. R.
,
Arends
,
J.
, and
Leonardsen
,
E. S.
,
1995
, “
Formation of Phosphate-Containing Calcium Fluoride at the Expense of Enamel, Hydroxyapatite and Fluoroapatite
,”
Caries Res.
,
29
, pp.
223
230
.
13.
Lin
,
J.
,
Raghavan
,
S.
, and
Fuerstenau
,
D. W.
,
1981
, “
The Adsorption of Fluoride Ions by Hydroxyapatite from Aqueous Solution
,”
Colloids Surf.
,
3
, pp.
357
370
.
14.
Chander
,
S.
,
Chiao
,
C. C.
, and
Fuerstenau
,
D. W.
,
1982
, “
Transformation of Calcium Fluoride for Caries Prevention
J. Dent. Res.
,
61
(
2
), pp.
403
407
.
15.
Kotha
,
S. P.
,
Kotha
,
S.
, and
Guzelsu
,
N.
,
2000
, “
A Shear-Lag Model to Account for Interaction Effects between Inclusions in Composites Reinforced with Rectangular Platelets
,”
Compos. Sci. Technol.
,
60
(
11
), pp.
2147
2158
.
16.
Kotha
,
S. P.
, and
Guzelsu
,
N.
,
2002
, “
Micro-mechanical Modeling of the Tensile Properties of Cortical Bone
,”
J. Theor. Biol.
,
219
(
2
), pp.
269
279
.
17.
Sedlin
,
E. D.
, and
Hirsch
,
C.
,
1966
, “
Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone
,”
Acta Orthop. Scand.
37
, pp.
29
48
.
18.
Walsh
,
W. R.
, and
Guzelsu
,
N.
,
1991
, “
Electrokinetic Behavior of Intact Wet Bone: Compartmental Model
,”
J. Orthop. Res.
,
9
, pp.
683
692
.
19.
Walsh
,
W. R.
,
Ohno
,
M.
, and
Guzelsu
,
N.
,
1994
, “
Bone Composite Behavior: Effects of Mineral-Organic Bonding
,”
J. Mater. Sci.: Mater. Med.
,
5
, pp.
72
79
.
20.
Bowman
,
S. M.
,
Zeind
,
J.
,
Gibson
,
L. J.
,
Hayes
,
W. C.
, and
McMahon
,
T. A.
,
1996
, “
The Tensile Behavior of Demineralized Bovine Cortical Bone
,”
J. Biomech.
,
29
(
11
), pp.
1497
1501
.
21.
Legros
,
R.
,
Balmain
,
N.
, and
Bonel
,
G.
,
1987
, “
Age-Related Changes in Mineral of Rat and Bovine Cortical Bone
,”
Calcif. Tissue Int.
,
41
, pp.
137
144
.
22.
Sarkar
,
B. C. R.
, and
Chauhan
,
U. P. S.
,
1967
, “
A New Method for Determining Micro Quantities of Calcium in Biological Materials
,”
Anal. Biochem.
,
20
, pp.
155
166
.
23.
Chen
,
P. S.
,
Toribara
,
T. Y.
, and
Warner
,
H.
,
1956
, “
Microdetermination of Phosphorus
,”
Anal. Biochem.
,
28
(
11
), pp.
1756
1758
.
24.
Whitford
,
G. M.
, and
Reynolds
,
K. E.
,
1979
, “
Plasma and Developing Enamel Fluoride Concentrations During Chronic Acid-Base Disturbances
,”
J. Dent. Res.
,
58
, pp.
2058
2065
.
25.
Kotha
,
S. P.
, and
Guzelsu
,
N.
,
2001
, “
Micromechanical Model of Nacre Tested in Tension
,”
J. Mater. Sci.: Mater. Med.
,
36
(
8
), pp.
2001
2007
.
26.
Jager
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model with Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
.
27.
Boskey
,
A. L.
,
Wright
,
T. M.
, and
Blank
,
R. D.
,
1999
, “
Collagen and Bone Strength
,”
J. Bone Miner. Res.
,
14
(
3
), pp.
330
335
.
28.
Puustjarvi
,
K.
,
Nieminen
,
J.
,
Rasanen
,
T.
,
Hyttinen
,
M.
,
Helminen
,
H. J.
,
Kroger
,
H.
,
Huuskonen
,
J.
,
Alhava
,
E.
, and
Kovanen
,
V.
,
1999
, “
Do More Highly Organized Collagen Fibrils Increase Bone Mechanical Strength in Loss of Mineral Density After One-year Running Training?
J. Bone Miner. Res.
,
14
(
3
), pp.
321
329
.
29.
Zioupos
,
P.
,
Currey
,
J. D.
, and
Hamer
,
A. J.
,
1999
, “
The Role of Collagen in the Declining Mechanical Properties of Aging Human Cortical Bone
,”
J. Biomed. Mater. Res.
,
45
(
2
), pp.
108
116
.
30.
Wagner
,
H. D.
, and
Weiner
,
S.
,
1992
, “
On the Relationship between the Microstructure of Bone and its Mechanical Stiffness
,”
J. Biomech.
,
25
(
11
), pp.
1311
1320
.
31.
Gilmore
,
R. S.
, and
Katz
,
J. L.
,
1982
, “
Elastic Properties of Apatites
,”
J. Bone Miner. Res.
,
17
, pp.
1131
1141
.
32.
Blitz
,
R. M.
, and
Pellegrino
,
E. D.
,
1969
, “
The Chemical Anatomy of Bone. I. A Comparative Study of Bone Composition in Sixteen Vertebrates
,”
J. Bone Jt. Surg.
,
59-A
(
3
), pp.
456
466
.
33.
Tamioka
,
A.
,
Tazawa
,
T.
,
Miyasaka
,
K.
, and
Ishikawa
,
K.
,
1974
, “
Shear Modulus from Gelatin Films
,”
Biopolymers
,
13
, pp.
735
746
.
34.
Gustafson
,
M. B.
,
Martin
,
R. B.
,
Gibson
,
V.
,
Storms
,
D. H.
,
Stover
,
S. M.
,
Gibeling
,
J.
, and
Griffin
,
L.
,
1996
, “
Calcium Buffering is Required to Maintain Bone Stiffness in Saline Solution
,”
J. Biomech.
,
29
(
9
), pp.
1191
1194
.
35.
Lee
,
D. D.
, and
Glimcher
,
M. J.
,
1991
, “
Three Dimensional Spatial Relationship between the Collagen Fibrils and the Inorganic Calcium Phosphate Crystals of Pickerel and Herring Bone
,”
J. Mol. Biol.
,
217
(
3
), pp.
487
501
.
36.
Fratzl
,
P.
,
Fratzl-Zelman
,
N.
, and
Klaushofer
,
K.
,
1993
, “
Collagen Packing and Mineralization
,”
Biophys. J.
,
54
, pp.
260
266
.
37.
Lees
,
S.
,
Bonar
,
L. R.
, and
Mook
,
H. A.
,
1984
, “
A Study of Dense Mineralized Tissues by X-ray Diffraction
,”
Int. J. Biol. Macromol.
,
6
, pp.
321
326
.
38.
Lees
,
S.
, and
Hukins
,
D. W. L.
,
1992
, “
X-Ray Diffraction by Collagen in the Fully Mineralized Cortical Bone of Cow Tibia
,”
Bone Miner.
,
17
(
1
), pp.
59
63
.
39.
Kato
,
Y. P.
,
Christiansen
,
D. L.
,
Hahn
,
R. A.
,
Shieh
,
S. J.
,
Goldstein
,
J. D.
, and
Silver
,
F. H.
,
1989
, “
Mechanical Properties of Collagen Fibers—A Comparison of Reconstituted and Rat Tail Tendon Fibers
,”
Biomaterials
,
10
(
1
), pp.
38
41
.
40.
Twombly
,
B.
,
Cassel
,
B.
,
Goodkowsky
,
S.
,
Miller
,
A. T.
, and
Hess
,
U.
,
1995
, “
Calorimetric and Dynamic Mechanical Analysis of Thermal Transitions in Collagen
,”
Mol. Cryst. Liq. Cryst.
,
265
, pp.
171
180
.
41.
Weadock
,
K. S.
,
Miller
,
E. J.
,
Bellincampi
,
L. D.
,
Zawadsky
,
J. P.
, and
Dunn
,
M. G.
,
1995
, “
Physical Cross-linking of Collagen Fibers—Comparison of Ultraviolet Irradiation and Dehydrothermal Treatment
,”
J. Biomed. Mater. Res.
,
9
(
11
), pp.
1373
1379
.
42.
Kotha, S. P. Unpublished data, 1999.
43.
Currey
,
J. D.
,
1988
, “
The Effect of Porosity and Mineral Content on the Young’s Modulus of Elasticity of Compact Bone
,”
J. Biomech.
,
21
, pp.
131
-
139
.
44.
Lucchinetti, E., 2001, “Composite Models of Bone Properties and Dense Bone Tissue as a Molecular Composite,” in Bone Mechanics Handbook, S. C. Cowin, ed., by 2nd edition. CRC Press, Boca Raton, pp. 12.1–12.15, 13.1–13.15.
45.
Burr
,
D. B.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Radin
,
E. L.
,
1985
, “
Bone Remodeling in Response to In-vivo Fatigue Microdamage
,”
J. Biomech.
,
18
(
3
), pp.
189
200
.
46.
Kotha
,
S. P.
, and
Guzelsu
,
N.
,
2000
, “
The Effects of Interphase and Bonding on the Elastic Modulus of Bone: Changes with Age-Related Osteoporosis
,”
Med. Eng. Phys.
,
22
(
8
), pp.
575
585
.
47.
DePaula, C. A. and Guzelsu, N. Unpublished data, 1999.
You do not currently have access to this content.