To investigate the effect of junction strands on microvessel permeability, we extend the previous analytical model developed by Fu et al. (1994, J. Biomech. Eng., 116, pp. 502–513), for the interendothelial cleft to include multiple junction strands in the cleft and an interface between the surface glycocalyx layer and the cleft entrance. Based on the electron microscopic observations by Adamson et al. (1998, Am. J. Physiol., 274(43), pp. H1885–H1894), that elevation of intracellular cAMP levels would increase number of tight junction strands, this two-junction-strand and two-pore model can successfully account for the experimental data for the decreased permeability to water, small and intermediate-sized solutes by cAMP.

1.
Fu
,
B. M.
,
Tsay
,
R.
,
Curry
,
F. E.
, and
Weinbaum
,
S.
,
1994
, “
A Junction-Orifice-Fiber Entrance Layer Model for Capillary Permeability: Application to Frog Mesenteric Capillaries
,”
J. Biomech. Eng.
,
116
, pp.
502
513
.
2.
Adamson
,
R. H.
,
Liu
,
B.
,
Nilson Fry
,
G.
,
Rubin
,
L. L.
, and
Curry
,
F. E.
,
1998
, “
Microvascular Permeability and Number of Tight Junctions are Modulated by cAMP
,”
Am. J. Physiol.
,
274
(
43
), pp.
H1885–H1894
H1885–H1894
.
3.
Curry
,
F. E.
,
1986
, “
Determinants of Capillary Permeability: A Review of Mechanisms Based on Single Capillary Studies in the Frog
,”
Circ. Res.
,
59
, pp.
367
380
.
4.
Michel
,
C. C.
,
1988
, “
Capillary Permeability and How It May Change
,”
J. Physiol. (London)
,
404
, pp.
1
29
.
5.
Michel
,
C. C.
, and
Curry
,
F. E.
,
2000
, “
Microvascular Permeability
,”
Physiol. Rev.
,
79
, pp.
703
761
.
6.
Weinbaum
,
S.
,
Tsay
,
R.
, and
Curry
,
F. E.
,
1992
, “
A Three-Dimensional Junction-Pore-Matrix Model for Capillary Permeability
,”
Microvasc. Res.
,
44
, pp.
85
111
.
7.
Fu
,
B. M.
,
Curry
,
F. E.
, and
Weinbaum
,
S.
,
1995
, “
A Diffusion Wake Model for Tracer Ultrastructure-Permeability Studies in Microvessels
,”
Am. J. Physiol.
,
269
(
38
), pp.
H2124–H2140
H2124–H2140
.
8.
Fu
,
B.
,
Curry
,
F. E.
,
Adamson
,
R. H.
, and
Weinbaum
,
S.
,
1997
, “
A Model for Interpreting the Labeling of Interendothelial Clefts
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
375
397
.
9.
Anderson
,
J. M.
, and
Van Itallie
,
C. M.
,
1995
, “
Tight Junctions and the Molecular Basis for Regulation of Paracellular Permeability
,”
Am. J. Physiol.
,
269
, pp.
G467–G475
G467–G475
.
10.
Wong
,
V.
, and
Gumbiner
,
B. M.
,
1997
, “
A Synthetic Peptide Corresponding to the Extracellular Domain of Occludin Perturbs the Tight Junction Permeability Barrier
,”
J. Cell Biol.
,
136
, pp.
139
409
.
11.
Barnard
,
J. W.
,
Seibert
,
A. F.
,
Prasad
,
V. R.
,
Smart
,
D. A.
,
Strada
,
S. J.
,
Taylor
,
A. E.
, and
Thompson
,
W. J.
,
1994
, “
Reversal of Pulmonary Capillary Ischemia-Reperfusion Injury by Rolipram, a cAMP Phosphodiesterase Inhibitor
,”
J. Appl. Physiol.
,
77
(
2
), pp.
774
781
.
12.
Duffey
,
M. E.
,
Hainau
,
B.
,
Ho
,
S.
, and
Bentzel
,
C. J.
,
1981
, “
Regulation of Epithelial Tight Junction Permeability by Cyclic AMP
,”
Nature (London)
,
294
, pp.
451
453
.
13.
He
,
P.
, and
Curry
,
F. E.
,
1993
, “
Differential Actions of cAMP on Endothelial [Ca2+]i and Permeability in Microvessels Exposed to ATP
,”
Am. J. Physiol.
,
265
(
34
), pp.
1019
1023
.
14.
Rubin
,
L. G.
,
Hall
,
D. E.
,
Porter
,
S.
,
Barbu
,
K.
,
Cannon
,
C.
,
Horner
,
H. C.
,
Janatpour
,
M.
,
Liaw
,
C. W.
,
Manning
,
K.
,
Morales
,
J.
,
Tanner
,
L. I.
,
Tomaselli
,
K. J.
, and
Bard
,
F.
,
1991
, “
A Cell Culture Model of the Blood-Brain Barrier
,”
J. Cell Biol.
,
115
, pp.
1725
1735
.
15.
Seeger
,
W.
,
Hansen
,
T.
,
Rossig
,
R.
,
Schmehl
,
T.
,
Schutte
,
H.
,
Kramer
,
H. J.
,
Walmrath
,
D.
,
Weissmann
,
N.
,
Grimminger
,
F.
, and
Suttorp
,
N.
,
1995
, “
Hydrogen Peroxide-Induced Increase in Lung Endothelial and Epithelial Permeability-Effect of Adenylate Cyclase Stimulation and Phosphodiesterase Inhibition
,”
Microvasc. Res.
,
50
, pp.
1
17
.
16.
Stelzner
,
T. J.
,
Weil
,
J. V.
, and
O’Brien
,
R. F.
,
1989
, “
Role of Cyclic Adenosine Monophosphate in the Induction of Endothelial Barrier Properties
,”
J. Cell Physiol.
,
139
, pp.
157
166
.
17.
Suttorp
,
N.
,
Weber
,
U.
,
Welsch
,
T.
, and
Schudt
,
C.
,
1993
, “
Role of Phosphodiesterases in the Regulation of Endothelial Permeability In Vitro
,”
J. Clin. Invest.
,
91
, pp.
1421
1428
.
18.
Fu
,
B. M.
,
Adamson
,
R. H.
, and
Curry
,
F. E.
,
1998
, “
Test of Two Pathway Model for Small Solute Exchange Across the Capillary Wall
,”
Am. J. Physiol.
,
274
(
43
), pp.
H2062–H2073
H2062–H2073
.
19.
Adamson
,
R. H.
, and
Michel
,
C. C.
,
1993
, “
Pathways Through the Intercellular Clefts of Frog Mesenteric Capillaries
,”
J. Physiol. (London)
,
466
, pp.
303
327
.
20.
Hu
,
X.
, and
Weinbaum
,
S.
,
1999
, “
A New View of Starling’s Hypothesis at the Microstructural Level
,”
Microvasc. Res.
,
58
, pp.
281
304
.
21.
Adamson
,
R. H.
, and
Clough
,
G.
,
1982
, “
Plasma Proteins Modify the Endothelial Cell Glycocalyx of Frog Mesenteric Microvessels
,”
J. Physiol. (London)
,
445
, pp.
473
486
.
22.
Vink
,
H.
, and
Duling
,
B. R.
,
1996
, “
Identification of Distinct Luminal Domains for Macromolecules, Erythrocytes, and Leukocytes Within Mammalian Capillaries
,”
Circ. Res.
,
79
, pp.
581
589
.
23.
Huxley
,
V. H.
,
Curry
,
F. E.
, and
Adamson
,
R. H.
,
1987
, “
Quantitative Fluorescence Microscopy on Single Capillaries: α-Lactalbumin Transport
,”
Am. J. Physiol.
,
252
(Heart Circ. Physiol. 21), pp.
H188–H197
H188–H197
.
24.
Garcia
,
J. G. N.
,
Davis
,
H. W.
, and
Pattierson
,
C. E.
,
1995
, “
Regulation of Endothelial Cell Gap Formation and Barrier Dysfunction: Role of Myosin Light Chain Phosphorylation
,”
J. Cell Physiol.
,
163
, pp.
510
522
.
25.
Wong
,
V.
,
1997
, “
Phosphorylation of Occludin Correlates With Occludin Localization and Function at the Tight Junction
,”
Am. J. Physiol.
,
272
(Cell Physiol. 42), pp.
C1859–C1867
C1859–C1867
.
You do not currently have access to this content.