The goal of this study was to expand understanding of strain-generated potential (SGP) in ligamentous or tendinous tissues. Most SGP studies in the past have focused on cartilage or bone. Herein, rabbit patellar tendon (PT) was used as a model. Each patellar tendon had two Ag/AgCl electrodes inserted at axial positions of 1/4 and 1/2 from patellar to tibial insertions. Each specimen was electrically isolated, gripped in a servohydraulic test system, and then subjected to a short session of uniaxial haversine tension (2.5 percent maximum strain) at a frequency of 0.5, 1.0, 2.0, or 5.0 Hz. A cyclic (sinusoidal) electrical potential superimposed upon a larger transient (exponentially asymptotic) potential was consistently observed. Upon termination of loading, the cyclic SGP ended, and the shifted baseline of the SGP exponentially decayed and asymptotically returned to a residual potential which over all specimens was not different than the original potential. The transient and cyclic SGPs were frequency dependent (P<0.001,P=0.06, respectively). To our knowledge, this transient portion of the SGP, although theoretically predicted by Suh (1996, Biorheology, 33, pp. 289–304) and Chen (1996, Ph.D. thesis, University of Wisconsin—Madison) has not been observed in other experiments using different protocols. Additional PTs were dehydrated and the rehydrated in solution at different pH levels. The magnitude of SGPs increased in basic solution (pH 9.5) but diminished in pH 4.7 buffer. This pH dependency suggests that electrokinetics is the dominant mechanism for the transient and cyclic responses of the SGPs, although this study does not provide direct evidence. [S0148-0731(00)00105-9]

1.
Viidik, A., 1990, “Structure and Function of Normal and Healing Tendons and Ligaments,” in: Biomechanics of Diarthrodial Joints—Vol. I, Mow et al., eds., Springer-Verlag, New York, pp. 13–38.
2.
Fung, Y. C., 1993, “Bio-viscoelastic Solid,” in: Biomechanics—Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York, pp. 196–260.
3.
Chen, C. T., and Vanderby, R., Jr., 1997, “A Poroelastic Model of Streaming Potential and Interstitial Fluid Flow in Ligaments and Tendons,” ASME BED-Vol. 36, pp. 185–186.
4.
Frank, C. B., Woo, S. L.-Y., Andriacchi, T., Brand, R., Oakes, B., Dahners, L., DeHaven, K., Lewis, J., and Sabiston, P., 1987, “Normal Ligament: Structure, Function, and Composition,” in: Proc. Workshop on Injury and Repair of the Musculoskeletal Soft Tissues, S. L. Y. Woo and J. A. Buckwalter, eds., Savannah, GA, pp. 45–101.
5.
Hannafin
,
J. A.
, and
Arnoczky
,
S. P.
,
1994
, “
Effect of Cyclic and Static Tensile Loading on Water Content and Solution Diffusion in Canine Flexor Tendons: An In Vitro Study
,”
J. Orthop. Res.
,
12
, pp.
350
356
.
6.
Suh
,
J.-K.
,
1996
, “
Dynamic Unconfined Compression of Articular Cartilage Under a Cyclic Compressive Load
,”
Biorheology
,
33
, pp.
289
304
.
7.
Chen, C. T., 1996, “An Investigation of the Interstitial Fluid Flow and Electromechanical Properties of Ligaments and Tendons,” Ph.D. thesis, University of Wisconsin—Madison.
8.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics I: Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
, pp.
615
627
.
9.
Anderson
,
J. C.
, and
Eriksson
,
C.
,
1968
, “
Electrical Properties of Wet Collagen
,”
Nature (London)
,
218
, pp.
166
168
.
10.
Salzstein
,
R. A.
, and
Pollack
,
S. R.
,
1987
, “
Electromechanical Potentials in Cortical Bone: Part II. Experimental Analysis
,”
J. Biomech.
,
20
, pp.
271
280
.
11.
Scott
,
G. C.
, and
Korostoff
,
E.
,
1990
, “
Oscillatory and Step Response Electromechanical Phenomena in Human and Bovine Bone
,”
J. Biomech.
,
23
, pp.
127
144
.
12.
Grodzinsky
,
A. J.
,
1983
, “
Electromechanical and Physicochemical Properties of Connective Tissue
,”
CRC Crit. Rev. Bioeng.
,
9
, pp.
133
199
.
13.
Pienkowski
,
D.
, and
Pollack
,
S. R.
,
1983
, “
The Origin of Stress-Generated Potentials in Fluid-Saturated Bone
,”
J. Orthop. Res.
,
1
, pp.
30
41
.
14.
MacGinitie
,
L. A.
,
Seiz
,
K. G.
,
Otter
,
M. W.
, and
Cochran
,
G. V. B.
,
1994
, “
Streaming Potential Measurements at Low Ionic Concentrations Reflect Bone Microstructure
,”
J. Biomech.
,
27
, pp.
969
978
.
15.
Sah
,
R. L.
,
Yang
,
A. S.
,
Chen
,
A. C.
,
Hant
,
J. J.
,
Halili-Reynaldo
,
B.
,
Yoshioka
,
M.
,
Amiel
,
D.
, and
Coutts
,
R. D.
,
1997
, “
Physical Properties of Rabbit Articular Cartilage After Transection of the Anterior Cruciate Ligament
,”
J. Orthop. Res.
,
15
, pp.
197
203
.
16.
Chen
,
A. C.
,
Nguyen
,
T. T.
, and
Sah
,
R. L.
,
1997
, “
Streaming Potentials During the Confined Compression Creep Test of Normal and Proteoglycan-Depleted Cartilage
,”
Ann. Biomed. Eng.
,
25
, pp.
269
277
.
17.
Frank
,
E. H.
,
Grodzinsky
,
A. J.
,
Koob
,
T. J.
, and
Eyre
,
D. R.
,
1987
, “
Streaming Potentials: a Sensitive Index of Enzymatic Degradation in Articular Cartilage
,”
J. Orthop. Res.
,
5
, pp.
497
508
.
18.
Sachs
,
J. R.
, and
Grodzinsky
,
A. J.
,
1995
, “
Electromechanical Spectroscopy of Cartilage Using a Surface Probe With Applied Mechanical Displacement
,”
J. Biomech.
,
28
, pp.
963
976
.
19.
Maroudas
,
A.
,
1975
, “
Biophysical Chemistry of Cartilage Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
,
12
, pp.
233
248
.
20.
Amiel
,
D.
,
Harwood
,
F. L.
,
Froneck
,
J.
, and
Akeson
,
W. H.
,
1984
, “
Ligaments and Tendons: A Morphological and Biochemical Comparison
,”
J. Orthop. Res.
,
1
, pp.
257
265
.
21.
Junqueira
,
L. C.
,
Bignolas
,
G.
,
Mourao
,
P. A.
, and
Bonetti
,
S. S.
,
1980
, “
Quantitation of Collagen–Proteoglycan Interaction in Tissue Sections
,”
Conn. Tiss. Res.
7
, pp.
91
96
.
22.
Scott
,
J. E.
,
1986
, “
Proteoglycan-Collagen Interactions
,”
Ciba Found. Symp.
,
124
, pp.
104
124
.
23.
Chen
,
C. T.
,
Malkus
,
D. S.
, and
Vanderby
,
R.
,
1998
, “
A Fiber Matrix Model for Interstitial Fluid Flow and Permeability in Ligaments and Tendons
,”
Biorheology
,
35
, pp.
103
118
.
24.
Joseph, N. R., 1971, “Dependence of Electrolyte Balance on Growth and Aging of Cells and Tissues,” in: Biophysical Properties of the Skin, Elden, ed., Wiley, New York, pp. 551–558.
25.
Otter
,
M.
,
Goheen
,
S.
, and
Williams
,
W. S.
,
1988
, “
Streaming Potentials in Chemically Modified Bone
,”
J. Orthop. Res.
,
6
, pp.
346
359
.
26.
Kowalchuk
,
R. M.
, and
Pollack
,
S. R.
,
1993
, “
Stress-Generated Potentials in Bone: Effects of Bone Fluid Composition and Kinetics
,”
J. Orthop. Res.
,
11
, pp.
874
883
.
27.
Mak, A. F., 1990, “Streaming Potential in Bone,” in: Biomechanics of Diarthrodial Joints—II, Mow et al., eds., Springer-Verlag, New York, pp. 175–194.
28.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1987
, “
The Kinetics of Chemically Induced Non-equilibrium Swelling of Articular Cartilage and Corneal Stroma
,”
ASME J. Biomech. Eng.
,
109
, pp.
79
89
.
29.
Vanderby
,
R.
,
Masters
,
G. P.
,
Bowers
,
J. R.
, and
Graf
,
B. K.
,
1991
, “
A Device to Measure the Cross-Sectional Area of Soft Connective Tissues
,”
IEEE Trans. Biomed. Eng.
,
38
, pp.
1040
1042
.
30.
Buckwalter, J. A., Hunziker, E. B., Rosenberg, L. C., Coutts, R. D., Adams, M., and Eyre, D. R., 1987 “
Articular Cartilage: Composition and Structure,” in: Proc. Workshop on Injury and Repair of the Musculoskeletal Soft Tissues, S. L. Y. Woo and J. A. Buckwalter, eds., Savannah, GA, June, pp. 427–463.
You do not currently have access to this content.