A network thermodynamic model has been devised to describe the coupled movement of water and a permeable additive within a kidney during perfusion under the combined action of diffusive, hydrodynamic, and mechanical processes. The model has been validated by simulating perfusions with Me2SO, glycerol, and sucrose and comparing predicted weight and vascular resistance with experimental results obtained by Pegg (1993). The flows of CPA, water, colloid, and cellular impermeants are governed by a combination of the individual osmotic potential and pressure differences between compartments of the kidney, the viscoelastic behavior of the tissue, and the momentum transferred between the flows. The model developed in this study presents an analytical tool for understanding the dynamics of the perfused kidney system and for modifying perfusion protocols to minimize the changes in cell volume, internal pressure build-up, and increases in vascular resistance that currently present barriers to the successful perfusion of organs.

1.
Bassingwaite
J. B.
,
1979
, “
A Concurrent Flow Model for Extraction During Transcapillary Passage
,”
Circulation Research
, Vol.
35
, pp.
483
503
.
2.
Beaman, J. J., Longoria, R. G., and Paynter, H. M., 1999, Physical Systems Modeling, Harper Collins Publishers, in press.
3.
Chapra, S. C., and Canale, R. P., 1988, Numerical Methods for Engineers, McGraw-Hill, New York.
4.
de Freitas
R. C.
,
Diller
K. R.
,
Lachenbruch
C. A.
, and
Merchant
F. A.
,
1998
, “
Network Thermodynamic Model of Coupled Transport in a Multicellular Tissue—The Islet of Langerhans
,”
Annals NY Acad. Sci.
, Vol.
858
, pp.
191
204
.
5.
Denbigh, K., 1971, The Principles of Chemical Equilibrium, 3rd ed., Cambridge University Press, London.
6.
Diller, K. R., 1988, “Energy Based Network Modeling for Cryobiology,” in: Low Temperature Biotechnology: Emerging Applications and Engineering Contributions, J. J. McGrath and K. R. Diller, eds., ASME, New York, pp. 203–228.
7.
Diller
K. R.
,
Beaman
J. J.
,
Montoya
J. P.
, and
Breedveld
P. C.
,
1988
, “
Network Thermodynamic Modeling With Bond Graphs for Membrane Transport During Cell Freezing Procedures
,”
ASME Journal of Heat Transfer
, Vol.
110
, pp.
938
945
.
8.
Diller
K. R.
, and
Raymond
J. F.
,
1990
, “
Water Transport Through a Multicellular Tissue During Freezing: A Network Thermodynamic Modeling Analysis
,”
Cryo-Letters
, Vol.
11
. pp.
151
161
.
9.
Fahy
G. M.
,
Kittrell
J. L.
, and
Severns
M.
,
1985
, “
A Fully Automated System for Treating Organs With Cryoprotective Agents
,”
Cryobiology
, Vol.
22
, pp.
607
608
.
10.
Fox, R. W., and McDonald, A. T., 1985, Introduction to Fluid Mechanics, Wiley, New York.
11.
Guyton, A. C., 1981, Textbook of Medical Physiology, 6th ed., W. B. Saunders Co., Philadelphia.
12.
Jacobsen
I. A.
, and
Pegg
D. E.
,
1984
, “
Cryopreservation of Organs
,”
Cryobiology
, Vol.
21
, pp.
377
384
.
13.
Kedem
O.
, and
Katchalsky
A.
,
1958
, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Nonelectrolytes
,”
Biochim. Biophys. Acta.
, Vol.
27
, pp.
229
248
.
14.
Krogh
A.
,
1919
, “
A Number and Distribution of Capillaries in Muscles With Calculations of Oxygen Pressures Head Necessary for Supplying the Tissue
,”
J. Physiol.
, Vol.
52
, p.
109
109
.
15.
Lachenbruch
C. A.
, and
Diller
K. R.
,
1998
, “
Sensitivity of Kidney Perfusion Protocol Design to Physical and Physiological Parameters
,”
Annals NYAS
, Vol.
858
, pp.
300
311
.
16.
Lachenbruch, C. A., Diller, K. R., and Pegg, D. E., 1999, Cryobiology, in preparation.
17.
Levin, R. L., 1981, “Osmotic Effects of Introducing and Removing Cryoprotectants: Perfused Tissues and Organs,” Advances in Bioengineering, ASME, New York, pp. 131–134.
18.
McGrath, J. J., 1988, “Membrane Transport Properties,” Low Temperature Biotechnology: Emerging Applications and Engineering Contributions, J. J. McGrath and K. R. Diller, eds., ASME, New York, pp. 273–330.
19.
Mickulecky
D. C.
,
1983
, “
Network Thermodynamics: A Candidate for a Common Language for Theoretical and Experimental Biology
,”
Amer. J. Physiol.
, Vol.
245
, pp.
R1–R9
R1–R9
.
20.
Oster
G. F.
,
Perelson
A. S.
, and
Katchalsky
A.
,
1973
, “
Network Thermodynamic Modeling of Biophysical Systems
,”
Quart. Review Biophysics
, Vol.
6
, pp.
1
134
.
21.
Papanek, T. H., 1976, “The Water Permeability of the Human Erythrocyte in Temperature Range +25°C to -10°C,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
22.
Paynter, H. M., 1961, Analysis and Design of Engineering Systems, MIT Press, Cambridge, MA.
23.
Pegg
D. E.
,
1972
, “
Perfusion of Rabbit Kidney With Cryoprotective Agents
,”
Cryobiology
, Vol.
9
, pp.
411
419
.
24.
Pegg
D. E.
, and
Wusteman
M. C.
,
1977
, “
Perfusion of Rabbit Kidneys With Glycerol Solutions at 5°C
,”
Cryobiology
, Vol.
14
, pp.
168
178
.
25.
Pegg
D. E.
, and
Robinson
S. M.
,
1978
, “
Flow Distribution and Cryoprotectant Concentration in Rabbit Kidneys Perfused With Glycerol Solutions
,”
Cryobiology
, Vol.
15
, pp.
609
617
.
26.
Pegg
D. E.
,
1986
, “
Organ Preservation
,”
Surgical Clinics N. Amer.
, Vol.
66
, pp.
617
632
.
27.
Pegg
D. E.
,
Jacobsen
I. A.
,
Diaper
M. P.
, and
Foreman
J.
,
1987
, “
Perfusion of Rabbit Kidneys With Solutions Containing Propane-1,2,-diol
,”
Cryobiology
, Vol.
24
, pp.
420
428
.
28.
Pegg, D. E., 1993, “Transport of Cryoprotective Agents in Rabbit Kidneys,” Unpublished Manuscript, Cambridge University and University of York, UK.
29.
Perl
W.
, and
Chinard
F. P.
,
1968
, “
A Convection-Diffusion Model of Indicator Transport Through an Organ
,”
Circulation Research
, Vol.
22
, pp.
273
278
.
30.
Peusner, L., 1986, Studies in Network Thermodynamics, Elsevier Science Publishers, New York.
31.
Pollock
G. A.
,
Pegg
D. E.
, and
Hardie
I. R.
,
1986
, “
An Isolated Perfused Rat Mesentery Model for Direct Observation of the Vasculature During Cryopreservation
,”
Cryobiology
, Vol.
23
, pp.
500
511
.
32.
Rosenberg, R. C., and Karnopp, D. C., 1983, Introduction to Physical System Dynamics, McGraw-Hill, New York.
33.
Rosenberg, R. C., 1994, The ENPORT Reference Manual, (Version 5.3), Rosencode Associates, East Lansing, MI.
34.
Rubinsky
B.
, and
Cravalho
E. G.
,
1982
, “
Transient Mass Transfer Processes During the Perfusion of a Biological Organ With a Cryophylactic Agent Solution
,”
Cryobiology
, Vol.
19
, pp.
70
82
.
35.
Smith, M. W., 1972, “Temperature Adaptation of Transport Properties in Poikilotherms,” in Hibernation and Hypothermia, Perspectives and Challenges, F. E. South, J. P. Hannon, J. R. Willis, E. T. Pengelley, and N. R. Alpert, eds., Elsevier Publishing Co., Amsterdam, pp. 219–237.
36.
Thoma
J.
, and
Atlan
H.
,
1985
, “
Osmosis and Hydraulics by Network Thermodynamics and Bond Graphs
,”
J. Franklin Inst.
, Vol.
319
, pp.
217
227
.
37.
Thomas
S. R.
, and
Mickulecky
D. C.
,
1978
, “
A Network Thermodynamic Model of Salt and Water Flow Across the Kidney Proximal Tubule
,”
Amer. J. Physiol.
, Vol.
235
, pp.
P638–P648
P638–P648
.
38.
Tsonev
L. I.
,
Stoiancheva
K. N.
, and
Fahy
G. M.
,
1994
, “
Permeation of 2,3-Butandeiol and Dimethyl Sulfoxide in Renal Cortex
,”
Cryo-Letters
, Vol.
15
, pp.
251
266
.
39.
Walsh, J. R., Diller, K. R., and Brand, J. J., 1999, “Measurement and Simulation of Water and Methanol Transport in Algal Cells,” ASME JOURNAL OF BIOMECHANICAL ENGINEERING, submitted.
40.
Weast, R. C., 1974, ed., Handbook of Chemistry and Physics, 54th ed., CRC Press, Cleveland.
This content is only available via PDF.
You do not currently have access to this content.