A three-dimensional Galerkin finite element method was developed for large deformations of ventricular myocardium and other incompressible, nonlinear elastic, anisotropic materials. Cylindrical and spherical elements were used to solve axisymmetric problems with r.m.s. errors typically less than 2 percent. Isochoric interpolation and pressure boundary constraint equations enhanced low-order curvilinear elements under special circumstances (69 percent savings in degrees of freedom, 78 percent savings in solution time for inflation of a thick-walled cylinder). Generalized tensor products of linear Lagrange and cubic Hermite polynomials permitted custom elements with improved performance, including 52 percent savings in degrees of freedom and 66 percent savings in solution time for compression of a circular disk. Such computational efficiencies become significant for large scale problems such as modeling the heart.

1.
Sarnoff
S. J.
,
Braunwald
E.
,
Welch
G. H.
,
Case
R. B.
,
Stainsby
W. N.
, and
Macruz
R.
, “
Hemodynamic Determinants of Oxygen Consumption of the Heart With Special Reference to the Tension-Time Index
,”
Am J Physiol
, Vol.
192
,
1958
, pp.
148
156
.
2.
Jan
K.-M.
, “
Distribution of Myocardial Stress and Its Influence of Coronary Blood Flow
,”
J Biomech
, Vol.
18
,
1985
, pp.
815
820
.
3.
Alpert, N. R., Cardiac Hypertrophy, Academic Press, New York, 1971.
4.
Huisman
R. M.
,
Elzinga
G.
,
Westerhof
N.
, and
Sipkema
P.
, “
Measurement of Left Ventricular Wall Stress
,”
Cardiovasc Res
, Vol.
14
,
1980
, pp.
142
153
.
5.
Horowitz
A.
,
Sheinman
I.
, and
Lanir
Y.
, “
Nonlinear Incompressible Finite Element for Simulating Loading of Cardiac Tissue—Part II: Three Dimensional Formulation for Thick Ventricular Wall Segments
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
110
,
1988
, pp.
62
68
.
6.
Hunter, P. J., McCulloch, A. D., Nielsen, P. M. F., and Smaill, B. H., “A Finite Element Model of Passive Ventricular Mechanics,” Computational Methods in Bioengineering, ASME, Spilker, R. L., and Simon, B. R., eds., Chicago, 1988, pp. 387–397.
7.
Huyghe
J. M.
,
van Campen
D. H.
,
Arts
T.
, and
Heethaar
R. M.
, “
A Two-Phase Finite Element Model of the Diastolic Left Ventricle
,”
J Biomech
, Vol.
24
,
1991
, pp.
527
538
.
8.
Huyghe
J. M.
,
Arts
T.
,
van Campen
D. H.
, and
Reneman
R. S.
, “
Porous Medium Finite Element Model of the Beating Left Ventricle
,”
Am J Physiol
, Vol.
262
,
1992
, pp.
H1256–H1267
H1256–H1267
.
9.
Bovendeerd
P. H. M.
,
Arts
T.
,
Huyghe
J. M.
,
van Campen
D. H.
, and
Reneman
R. S.
, “
Dependence of Local Left Ventricular Wall Mechanics on Myocardial Fiber Orientation: A Model Study
,”
J Biomech
, Vol.
25
,
1992
, pp.
1129
1140
.
10.
Guccione, J. M., and McCulloch, A. D., “Finite Element Modeling of Ventricular Mechanics,” Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function, Springer-Verlag, Glass, L., Hunter, P. J., and McCulloch, A. D. eds., New York, 1991, pp. 121–144.
11.
Costa
K. D.
,
Hunter
P. J.
,
Wayne
J. S.
,
Waldman
L. K.
,
Guccione
J. M.
, and
McCulloch
A. D.
, “
A Three-Dimensional Finite Element Method for Large Elastic Deformations of Ventricular Myocardium: Part II—Prolate Spheroidal Coordinates
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
118
, this issue,
1996
, pp.
462
470
.
12.
Green, A. E., and Adkins, J. E., Large Elastic Deformations, Clarendon Press, Oxford, 1970.
13.
Streeter, D. D., Jr, “Gross Morphology and Fiber Geometry of the Heart,” Handbook of Physiology, Section 2: The Cardiovascular System, Chapter 4, American Physiological Society, M. B. R., eds., Bethesda, MD, 1979, pp. 61–112.
14.
Spencer, A. J. M., Continuum Mechanics, Longman Press, London, 1980.
15.
Green, A. E., and Zema, W., Theoretical Elasticity, Oxford University Press, London, 1968.
16.
Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1972.
17.
Glowinski, R., and LeTallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
18.
NAG Fortran Library, Mark 15, 1991.
19.
Zienkiewicz
O. C.
, and
Zhu
J. Z.
, “
A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis
,”
Int J Numer Methods Eng
, Vol.
24
,
1987
, pp.
337
357
.
20.
Rivlin
R. S.
, “
Large Elastic Deformations of Isotropic Materials VI. Further Results in the Theory of Torsion, Shear and Flexure
,”
Phil Trans
, Vol.
A242
,
1950
, pp.
173
195
.
21.
Guccione
J. M.
,
McCulloch
A. D.
, and
Waldman
L. K.
, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
113
,
1991
, pp.
42
55
.
22.
Klingbeil
W. W.
, and
Shield
R. T.
, “
Large-Deformation Analyses of Bonded Elastic Mounts
,”
Z angew Math Phys
, Vol.
17
,
1966
, pp.
281
305
.
23.
Ericksen
J. L.
, “
Inversion of a Perfectly Elastic Spherical Shell
,”
Z Angew Math Mech
, Vol.
35
,
1955
, pp.
382
385
.
24.
Bergel, D. A., and Hunter, P. J., “The Mechanics of the Heart,” Quantitative Cardiovascular Studies, University Park Press, Hwang, N. H. C., Gross, D. R., and Patel, D. J., eds., Baltimore, 1979, pp. 151–213.
25.
Taber
L. A.
, “
On a Nonlinear Theory for Muscle Shells: II. Application to the Beating Left Ventricle
,”
J Biomech Eng
, Vol.
113
,
1991
, pp.
63
71
.
26.
Nevo
E.
, and
Lanir
Y.
, “
The Effect of Residual Strain on the Diastolic Function of the Left Ventricle as Predicted by a Structural Model
,”
J Biomech
, Vol.
27
,
1994
, pp.
1433
1446
.
27.
Battra
R. C.
, “
Finite Plane Strain Deformations of Rubberlike Materials
,”
Int J Num Meth Engng
, Vol.
15
,
1980
, pp.
145
160
.
28.
Glowinski
R.
, and
LeTallec
P.
, “
Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented Lagrangian Methods: II. Three-Dimensional problems
,”
SIAM J Appl Math.
Vol.
44
,
1984
, pp.
710
733
.
29.
Glowinski
R.
, and
LeTallec
P.
, “
Numerical Solution of Problems in Incompressible Finite Elasticity by Augmented Lagrangian Methods: I. Two-Dimensional and Axisymmetric Problems
,”
SIAM J Appl Math
, Vol.
42
,
1982
, pp.
400
429
.
30.
Arts
T.
,
Reneman
R. S.
, and
Veenstra
P. C.
, “
A Model of the Mechanics of the Left Ventricle
,”
Ann Biomed Eng
, Vol.
7
,
1979
, pp.
299
318
.
31.
May-Newman
K. D.
,
Omens
J. H.
,
Pavelec
R. S.
, and
McCulloch
A. D.
, “
Three-Dimensional Transmural Mechanical Interaction Between the Coronary Vasculature and Passive Myocardium in the Dog
,”
Circ Res
, Vol.
74
,
1994
, pp.
1166
1178
.
32.
Humphrey
J. D.
, and
Yin
F. C. P.
, “
Constitutive Relations and Finite Deformations of Passive Cardiac Tissue II: Stress Analysis in the Left Ventricle
,”
Circ Res.
Vol.
65
,
1989
, pp.
805
817
.
33.
Bogen
D. K.
, “
Strain Energy Descriptions of Biological Swelling: I. Single Fluid Compartment Models
,”
ASME JOURNAL OF BIOMECHANICAL ENGINEERING
, Vol.
109
,
1987
, pp.
252
256
.
34.
Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, 1981.
35.
Spaan
J. A. E.
, “
Coronary Diastolic Pressure-Flow Relation and Zero Flow Pressure Explained on the Basis of Intramyocardial Compliance
,”
Circ Res
, Vol.
56
,
1985
, pp.
293
309
.
36.
Vosoughi
J.
,
Vaishnav
R. N.
, and
Patel
D. J.
, “
Compressibility of the Myocardial Tissue
,”
Adv Bioeng
, Vol.
1980
, pp.
45
48
.
37.
Omens
J. H.
, and
Fung
Y. C.
, “
Residual Strain in Rat Left Ventricle
,”
Circ Res.
Vol.
66
,
1990
, pp.
37
45
.
38.
Rodriguez, E. K., “Residual Stress in the Rat Left Ventricle During Growth and Remodeling,” Doctoral Thesis, 1993, University of California San Diego, La Jolla, CA.
39.
Bovendeerd
P. H. M.
,
Huyghe
J. M.
,
Arts
T.
,
van Campen
D. H.
, and
Reneman
R. S.
, “
Influence of Endocardial-Epicardial Crossover of Muscle Fibers on Left Ventricular Wall Mechanics
,”
J Biomech
, Vol.
27
,
1994
, pp.
941
951
.
This content is only available via PDF.
You do not currently have access to this content.