Abstract

When runners impact the ground, they experience a sudden peak ground reaction force (GRF), which may be up to 4× greater than their bodyweight. Increased GRF impact peak magnitude has been associated with lower limb injuries in runners. Yet, shoe midsoles are capable of cushioning the impact between the runner and the ground to reduce GRF. It has been proposed that midsoles should be tunable with subject mass to minimize GRF and reduce risk of injury. Auxetic metamaterials, structures designed to achieve negative Poisson's ratios, demonstrate superior impact properties and are highly tunable. Recently, auxetic structures have been introduced in footwear, but their effects on GRF are not documented in literature. This work investigates the viability of a three-dimensional auxetic impact structure with a tunable force plateau as a midsole through mass-spring-damper simulation. An mass-spring-damper model was used to perform 315 simulations considering combinations of seven subject masses (45–90 kg), 15 auxetic plateau forces (72–1080 N), and three auxetic damping conditions (450, 725, and 1000 Ns/m) and regression analysis was used to determine their influence on GRF impact peak, energy, instantaneous, and average loading rate. Simulations showed that tuning auxetic plateau force and damping based on subject mass may reduce GRF impact and loading rate versus simulated conventional midsoles. Auxetic plateau force and damping conditions of 450 Ns/m and ∼1 bodyweight (BW), respectively, minimized peak impact GRF. This work demonstrates the need for tunable auxetic midsoles and may inform future work involving midsole testing.

References

1.
Miller
,
R. H.
, and
Hamill
,
J.
,
2009
, “
Computer Simulation of the Effects of Shoe Cushioning on Internal and External Loading During Running Impacts
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
4
), pp.
481
490
.10.1080/10255840802695437
2.
Bennell
,
K.
,
Crossley
,
K.
,
Jayarajan
,
J.
,
Walton
,
E.
,
Warden
,
S.
,
Kiss
,
S. Z.
, and
Wrigley
,
T.
,
2004
, “
Ground Reaction Forces and Bone Parameters in Females With Tibial Stress Fracture
,”
Med. Sci. Sports Exer.
,
36
(
3
), pp.
397
404
.10.1249/01.MSS.0000117116.90297.E1
3.
Milner
,
C. E.
,
Ferber
,
R.
,
Pollard
,
C. D.
,
Hamill
,
J.
, and
Davis
,
I. S.
,
2006
, “
Biomechanical Factors Associated With Tibial Stress Fracture in Female Runners
,”
Med. Sci. Sports Exer.
,
38
(
2
), pp.
323
328
.10.1249/01.mss.0000183477.75808.92
4.
Zadpoor
,
A. A.
, and
Nikooyan
,
A. A.
,
2011
, “
The Relationship Between Lower-Extremity Stress Fractures and the Ground Reaction Force: A Systematic Review
,”
Clin. Biomech.
,
26
(
1
), pp.
23
28
.10.1016/j.clinbiomech.2010.08.005
5.
Nigg
,
B. M.
,
Cigoja
,
S.
, and
Nigg
,
S. R.
,
2020
, “
Effects of Running Shoe Construction on Performance in Long Distance Running
,”
Footwear Sci.
,
12
(
3
), pp.
133
138
.10.1080/19424280.2020.1778799
6.
Maropoulos
,
S.
,
Korakidis
,
G.
,
Fasnakis
,
D.
,
Papanikolaou
,
S.
,
Papagiannaki
,
M.
, and
Arabazti
,
F.
,
2017
, “
The Effect of Cushioning System on Impact Attenuation of Athletic Footwear
,”
MATEC Web Conf.
,
112
, p.
08018
.10.1051/matecconf/201711208018
7.
Ly
,
Q. H.
,
Alaoui
,
A.
,
Erlicher
,
S.
, and
Baly
,
L.
, January 19,
2010
, “
Towards a Footwear Design Tool: Influence of Shoe Midsole Properties and Ground Stiffness on the Impact Force During Running
,”
J. Biomech.
,
43
(
2
), pp.
310
317
.10.1016/j.jbiomech.2009.08.029
8.
Lake
,
M. J.
,
2000
, “
Determining the Protective Function of Sports Footwear
,”
Ergonomics
,
43
(
10
), pp.
1610
1621
.10.1080/001401300750004032
9.
Logan
,
S.
,
Hunter
,
I.
,
Hopkins
,
J. T.
,
Feland
,
J. B.
, and
Parcell
,
A. C.
,
2010
, “
Ground Reaction Force Differences Between Running Shoes, Racing Flats, and Distance Spikes in Runners
,”
J. Sports Sci. Med.
,
9
(
1
), pp.
147
153
.https://www.jssm.org/volume09/iss1/cap/jssm-09-147.pdf
10.
Baltich
,
J.
,
Maurer
,
C.
, and
Nigg
,
B. M.
,
2015
, “
Increased Vertical Impact Forces and Altered Running Mechanics With Softer Midsole Shoes
,”
PLoS One
,
10
(
4
), p.
e0125196
.10.1371/journal.pone.0125196
11.
Worobets
,
J.
,
Wannop
,
J. W.
,
Tomaras
,
E.
, and
Stefanyshyn
,
D.
,
2014
, “
Softer and More Resilient Running Shoe Cushioning Properties Enhance Running Economy
,”
Footwear Sci.
,
6
(
3
), pp.
147
153
.10.1080/19424280.2014.918184
12.
Cigoja
,
S.
,
Fletcher
,
J. R.
,
Esposito
,
M.
,
Stefanyshyn
,
D. J.
, and
Nigg
,
B. M.
,
2021
, “
Increasing the Midsole Bending Stiffness of Shoes Alters Gastrocnemius Medialis Muscle Function During Running
,”
Sci. Rep.
,
11
(
1
), p.
749
.10.1038/s41598-020-80791-3
13.
Lam
,
W.-K.
,
Liebenberg
,
J.
,
Woo
,
J.
,
Park
,
S.-K.
,
Yoon
,
S.-H.
,
Cheung
,
R. T.-H.
, and
Ryu
,
J.
,
2018
, “
Do Running Speed and Shoe Cushioning Influence Impact Loading and Tibial Shock in Basketball Players?
,”
PeerJ
,
6
, p.
e4753
.10.7717/peerj.4753
14.
Uddin
,
K. Z.
,
Youssef
,
G.
,
Trkov
,
M.
,
Seyyedhosseinzadeh
,
H.
, and
Koohbor
,
B.
,
2020
, “
Gradient Optimization of Multi-Layered Density-Graded Foam Laminates for Footwear Material Design
,”
J. Biomech.
,
109
, p.
109950
.10.1016/j.jbiomech.2020.109950
15.
Shimazaki
,
Y.
,
Nozu
,
S.
, and
Inoue
,
T.
,
2016
, “
Shock-Absorption Properties of Functionally Graded EVA Laminates for Footwear Design
,”
Polym. Test.
,
54
, pp.
98
103
.10.1016/j.polymertesting.2016.04.024
16.
Lakes
,
R.
, February 27,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1041
.10.1126/science.235.4792.1038
17.
Chan
,
N.
, and
Evans
,
K. E.
, November 1,
1997
, “
Fabrication Methods for Auxetic Foams
,”
J. Mater. Sci.
,
32
(
22
), pp.
5945
5953
.10.1023/A:1018606926094
18.
Saxena
,
K. K.
,
Das
,
R.
, and
Calius
,
E. P.
,
2016
, “
Three Decades of Auxetics Research − Materials With Negative Poisson's Ratio: A Review
,”
Adv. Eng. Mater.
,
18
(
11
), pp.
1847
1870
.10.1002/adem.201600053
19.
Steffens
,
F.
,
Oliveira
,
F. R.
, and
Fangueiro
,
R.
,
2021
, “
Energy Absorption From Composite Reinforced With High Performance Auxetic Textile Structure
,”
J. Compos. Mater.
,
55
(
7
), pp.
1003
1013
.10.1177/0021998320964552
20.
Imbalzano
,
G.
,
Tran
,
J. P.
,
Ngo
,
T.
, and
Lee
,
P.
,
2016
, “
A Numerical Study of Auxetic Composite Panels Under Blast Loadings
,”
Compos. Struct.
,
135
, pp.
339
352
.10.1016/j.compstruct.2015.09.038
21.
Mercieca
,
L. A. S.
,
Formosa
,
C.
,
Grima
,
J. N.
,
Chockalingam
,
N.
,
Gatt
,
R.
, and
Gatt
,
A.
,
2017
, “
On the Use of Auxetics in Footwear: Investigating the Effect of Padding and Padding Material on Forefoot Pressure in High Heels
,”
Phys. Status Solidi (b)
,
254
(
12
), p.
1700528
.10.1002/pssb.201700528
22.
Cross
,
T. M.
,
Hoffer
,
K. W.
,
Jones
,
D. P.
,
Kirschner
,
P. B.
,
Langvin
,
E.
, and
Meschter
,
J. C.
,
2016
, “Auxetic Structures and Footwear with Soles Having Auxetic Structures,” U.S. Patent No.
US9402439B2
. https://patents.google.com/patent/US9402439B2/en
23.
Puma, 2021, “Calibrate Runner,” PUMA.com, Online, accessed June 21, 2021, https://us.puma.com/en/us/puma/calibrate-runner
24.
De Wit
,
B.
,
De Clercq
,
D.
, and
Aerts
,
P.
,
2000
, “
Biomechanical Analysis of the Stance Phase During Barefoot and Shod Running
,”
J. Biomech.
,
33
(
3
), pp.
269
278
.10.1016/S0021-9290(99)00192-X
25.
Dorschky
,
E.
,
Krüger
,
D.
,
Kurfess
,
N.
,
Schlarb
,
H.
,
Wartzack
,
S.
,
Eskofier
,
B. M.
, and
van den Bogert
,
A. J.
,
2019
, “
Optimal Control Simulation Predicts Effects of Midsole Materials on Energy Cost of Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
8
), pp.
869
879
.10.1080/10255842.2019.1601179
26.
Silva
,
É. Q.
,
Miana
,
A. N.
,
Ferreira
,
J. S. S. P.
,
Kiyomoto
,
H. D.
,
Dinato
,
M. C. M. E.
, and
Sacco
,
I. C. N.
,
2020
, “
The Association Between Rearfoot Motion While Barefoot and Shod in Different Types of Running Shoes in Recreational Runners
,”
J. Sports Sci. Med.
,
19
(
2
), pp.
383
389
.https://www.proquest.com/docview/2572975372?accountid=11233&parentSessionId=5r38bzh78949QiSbdY3qmxlPKpEGi0iM9LbmM3HMaYM%3D&pq-origsite=primo
27.
Tsouknidas
,
A.
,
Pantazopoulos
,
M.
,
Sagris
,
D.
,
Fasnakis
,
D.
,
Maropoulos
,
S.
,
Arabatzi
,
F.
, and
Michailidis
,
N.
,
2017
, “
The Effect of Body Mass on the Shoe-Athlete Interaction
,”
Appl. Bionics Biomech.
,
2017
, p.
e7136238
.10.1155/2017/7136238
28.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
,
DeMers
,
M. S.
,
Rajagopal
,
A.
,
Millard
,
M.
,
Hamner
,
S. R.
,
Arnold
,
E. M.
,
Yong
,
J. R.
,
Lakshmikanth
,
S. K.
,
Sherman
,
M. A.
,
Ku
,
J. P.
, and
Delp
,
S. L.
, July 26,
2018
, “
OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
29.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
, November
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
30.
Law
,
M. H. C.
,
Choi
,
E. M. F.
,
Law
,
S. H. Y.
,
Chan
,
S. S. C.
,
Wong
,
S. M. S.
,
Ching
,
E. C. K.
,
Chan
,
Z. Y. S.
,
Zhang
,
J. H.
,
Lam
,
G. W. K.
,
Lau
,
F. O. Y.
, and
Cheung
,
R. T. H.
,
2019
, “
Effects of Footwear Midsole Thickness on Running Biomechanics
,”
J. Sports Sci.
,
37
(
9
), pp.
1004
1010
.10.1080/02640414.2018.1538066
31.
Ren
,
X.
,
Das
,
R.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Metamaterials and Structures: A Review
,”
Smart Mater. Struct.
,
27
(
2
), p.
023001
.10.1088/1361-665X/aaa61c
32.
Kersting
,
U. G.
, and
Brüggemann
,
G.-P.
,
2006
, “
Midsole Material-Related Force Control During Heel–Toe Running
,”
Res. Sports Med.
,
14
(
1
), pp.
1
17
.10.1080/15438620500528158
33.
Wit
,
B.
,
Clercq
,
D.
, and
Aerts
,
P.
,
1996
, “
Ground Reaction Forces and Spatio-Temporal Variables During Barefoot and Shod Running
,”
ISBS—Conference Proceedings
, Madeira, Portugal, June 25–29, pp.
252
255
.https://ojs.ub.uni-konstanz.de/cpa/article/view/2708
34.
Marc
,
A.
,
Sedeaud
,
A.
,
Guillaume
,
M.
,
Rizk
,
M.
,
Schipman
,
J.
,
Antero-Jacquemin
,
J.
,
Haida
,
A.
,
Berthelot
,
G.
, and
Toussaint
,
J.-F.
,
2014
, “
Marathon Progress: Demography, Morphology and Environment
,”
J. Sports Sci.
,
32
(
6
), pp.
524
532
.10.1080/02640414.2013.835436
35.
Hreljac
,
A.
,
Marshall
,
R. N.
, and
Hume
,
P. A.
,
2000
, “
Evaluation of Lower Extremity Overuse Injury Potential in Runners [Miscellaneous Article]
,”
Med. Sci. Sports Exer.
,
32
(
9
), pp.
1635
1641
.https://journals.lww.com/acsmmsse/Fulltext/2000/09000/Evaluation_of_lower_extremity_overuse_injury.18.aspx
36.
Davis
,
I. F.
,
Milner
,
C. E.
, and
Hamill
,
J. F.
,
2004
, “
Does Increased Loading During Running Lead to Tibial Stress Fractures? A Prospective Study [Abstract]
,”
Med. Sci. Sports Exer.
,
36
(
5
), p. S58.10.1249/00005768-200405001-00271
37.
Ferber
,
R.
,
Davis
,
I. M. F.
,
Hamill
,
J. F.
,
Pollard
,
C. D.
, and
McKeown
,
K. A.
,
2002
, “
Kinetic Variables in Subjects With Previous Lower Extremity Stress Fractures
,”
Med. Sci. Sports Exer.
,
34
(
5
), p. S5.10.1097/00005768-200205001-00025
38.
Dixon
,
S. J.
,
Creaby
,
M. W.
, and
Allsopp
,
A. J.
,
2006
, “
Comparison of Static and Dynamic Biomechanical Measures in Military Recruits With and Without a History of Third Metatarsal Stress Fracture
,”
Clin. Biomech.
,
21
(
4
), pp.
412
419
.10.1016/j.clinbiomech.2005.11.009
39.
Ali
,
M.
,
Nazir
,
A.
, and
Jeng
,
J.-Y.
,
2020
, “
Mechanical Performance of Additive Manufactured Shoe Midsole Designed Using Variable-Dimension Helical Springs
,”
Int. J. Adv. Manuf. Technol.
,
111
(
11–12
), pp.
3273
3292
.10.1007/s00170-020-06227-4
You do not currently have access to this content.