Abstract

Bone being a hierarchical composite material has a structure varying from macro- to nanoscale. The arrangement of the components of bone material and the bonding between fibers and matrix gives rise to its unique material properties. In this study, the micromechanisms of cortical bone failure were examined under different loading conditions using scanning electron microscopy. The experimental tests were conducted in longitudinal and transverse directions of bone diaphysis under tensile as well as compressive loading. The results show that bone material has maximum stiffness under longitudinal tensile loading, while the strength is higher under transverse compressive loading. A reverse trend of compressive mechanical properties of bone is observed for longitudinal and transverse loading as compared to trends reported in the previous studies. Therefore, micromechanisms of cortical bone failure were analyzed for different loading conditions to reveal such type of behavior of cortical bone and to correlate bone microstructure with mechanical response of bone.

References

1.
An
,
Y. H.
, and
Draughn
,
R. A.
,
1999
,
Mechanical Testing of Bone and the Bone-Implant Interface
, Chap. 1,
CRC Press
,
Boca Raton, FL
.
2.
Rho
,
J. D.
,
Spearing
,
L. K.
, and
Zioupos
,
P.
,
1998
, “
Mechanical Properties and the Hierarchical Structure of Bone
,”
Med. Eng. Phys.
,
20
, pp.
92
102
.10.1016/S1350-4533(98)00007-1
3.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Ann. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.10.1146/annurev.matsci.28.1.271
4.
Robinson
,
R. A.
, and
Elliot
,
S. R.
,
1957
, “
The Water Content of Bone: I—The Mass, Inorganic Crystals, Organic Matrix, and ‘CO2 Space’ Components in a Unit Volume of Dog Bone
,”
J. Bone Jt. Surg.
,
39
(
1
), pp.
167
188
.10.2106/00004623-195739010-00015
5.
Martin
, R. B.
,
1984
, “
Porosity and Specific Surface of Bone
,”
Crit. Rev. Biomed Eng.
, 10(3), pp. 179–222.https://www.ncbi.nlm.nih.gov/pubmed/6368124
6.
Lucchinetti
,
E.
,
2001
, “
Composite Models of Bone Properties
,”
Bone Mechanics Handbook
,
CRC Press
,
Boca Raton, FL, Chap. 3
.
7.
Ketz
,
J. L.
,
1971
, “
Hard Tissue as a Composite Material: I—Bounds on the Elastic Behaviour
,”
J. Biomech.
, 4(5), pp.
455
473
.10.1016/0021-9290(71)90064-9
8.
Krajcinovic
,
D.
,
Trafimow
,
J.
, and
Sumarac
,
D.
,
1987
, “
Simple Constitutive Model for a Cortical Bone
,”
J. Biomech.
,
8
, pp.
779
784
.10.1016/0021-9290(87)90057-1
9.
Knott
,
L.
, and
Bailey
,
A. J.
,
1998
, “
Collagen Cross-Links in Mineralizing Tissues: A Review of Their Chemistry, Function, and Clinical Relevance
,”
Bone
,
3
, pp.
181
187
.10.1016/S8756-3282(97)00279-2
10.
Currey
,
J. D.
,
Pitchford
,
J. W.
, and
Baxter
,
P. D.
,
2007
, “
Variability of the Mechanical Properties of Bone, and Its Evolutionary Consequences
,”
J. R. Soc. Interface
,
4
(
12
), pp.
127
135
.10.1098/rsif.2006.0166
11.
Burstein
,
A. H.
,
Zika
,
J. M.
,
Heiple
,
K. G.
, and
Klein
,
L.
,
1975
, “
Contribution of Collagen and Mineral to the Elastic-Plastic Properties of Bone
,”
J. Bone Jt. Surg. Am.
,
57
(
7
), pp.
956
961
.10.2106/00004623-197557070-00013
12.
Walsh
,
W. R.
, and
Guzelsu
,
N.
,
1994
, “
Compressive Properties of Cortical Bone: Mineral-Organic Interfacial Bonding
,”
Biomaterials
,
2
, pp.
137
145
.10.1016/0142-9612(94)90263-1
13.
Walsh
,
W. R.
,
Labrador
,
D. P.
,
Kim
,
H. D.
, and
Guzelsu
,
N.
,
1994
, “
The Effect of In Vitro Fluoride Ion Treatment on the Ultrasonic Properties of Cortical Bone
,”
Ann. Biomed. Eng.
,
4
, pp.
404
415
.10.1007/BF02368247
14.
Liu
,
D.
,
Weiner
,
S.
, and
Wagner
,
H. D.
,
1999
, “
Anisotropic Mechanical Properties of Lamellar Bone Using Miniature Cantilever Bending Specimens
,”
J. Biomech.
,
32
(
7
), pp.
647
654
.10.1016/S0021-9290(99)00051-2
15.
Wager
,
H. D.
, and
Weiner
,
S.
,
1992
, “
On the Relationship Between the Microstructure of Bone and Its Mechanical Stiffness
,”
J. Biomech.
,
25
(
11
), pp.
1311
1320
.10.1016/0021-9290(92)90286-A
16.
Sasaki
,
N.
,
Matsushima
,
N.
,
Ikawa
,
T.
,
Yamamura
,
H.
, and
Fukuda
,
A.
,
1989
, “
Orientation of Bone Minerals and Its Role in the Anisotropic Mechanical Properties of Bone-Transverse Isotropy
,”
J. Biomech.
,
22
(
2
), pp.
157
164
.10.1016/0021-9290(89)90038-9
17.
Sharma
,
N. K.
,
Sehgal
,
D. K.
, and
Pandey
,
R. K.
,
2011
, “
Orientation Dependence of Elastic-Plastic Fracture Toughness and Micro-Fracture Mechanism in Cortical Bone
,”
Eng. Lett.
,
19
(
4
), pp.
304
309
.https://www.researchgate.net/publication/286569221_Orientation_Dependence_of_Elastic-plastic_Fracture_Toughness_and_Micro-fracture_Mechanism_in_Cortical_Bone
18.
Nalla
,
R. K.
,
Stölken
,
J. S.
,
Kinney
,
J. H.
, and
Ritchie
,
R. O.
,
2005
, “
Fracture in Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms
,”
J. Biomech.
,
38
(
7
), pp.
1517
1525
.10.1016/j.jbiomech.2004.07.010
19.
Ritchie
,
R. O.
,
Kinney
,
J. H.
,
Kruzic
,
J. J.
, and
Nalla
,
R. K.
,
2005
, “
A Fracture Mechanics and Mechanistic Approach to the Failure of Cortical Bone
,”
Fatigue Fract. Eng. Mater. Struct.
,
28
(
4
), pp.
345
371
.10.1111/j.1460-2695.2005.00878.x
20.
Ritchie
,
R. O.
,
Koester
,
K. J.
,
Ionova
,
S.
,
Yao
,
W.
,
Lane
,
N. E.
, and
Ager
,
J. W.
, III
,
2008
, “
Measurement of the Toughness of Bone: A Tutorial With Special Reference to Small Animal Studies
,”
Bone
,
43
(
5
), pp.
798
812
.10.1016/j.bone.2008.04.027
21.
Zimmermann
,
E. A.
,
Launey
,
M. E.
,
Barth
,
H. D.
, and
Ritchie
,
R. O.
,
2009
, “
Mixed-Mode Fracture of Human Cortical Bone
,”
Biomaterials
,
30
(
29
), pp.
5877
5884
.10.1016/j.biomaterials.2009.06.017
22.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
,
V. H.
,
1974
, “
The Elastic Modulus for Bone
,”
J. Biomech.
,
7
(
3
), pp.
271
275
.10.1016/0021-9290(74)90018-9
23.
Reilly
,
D. T.
, and
Burstein
,
A. H.
,
1974
, “
The Mechanical Properties of Cortical Bone
,”
J. Bone Jt. Surg.
,
56A
(
5
), pp.
1001
1022
.10.2106/00004623-197456050-00012
24.
Currey
,
J. D.
,
1984
,
The Mechanical Adaptations of Bones
,
Princeton University Press
,
Princeton, NJ
.
25.
Currey
,
J. D.
,
2002
,
Bones Structure and Mechanics
,
Princeton University Press
,
Princeton, NJ
.
26.
Havaldar
,
R.
,
Pilli
,
S. C.
, and
Putti
,
B. B.
,
2014
, “
Insights Into the Effects of Tensile and Compressive Loadings on Human Femur Bone
,”
Adv. Biomed. Res.
,
3
(
1
), p.
101
.10.4103/2277-9175.129375
27.
Simkin
,
A.
, and
Robin
,
G.
,
1973
, “
The Mechanical Testing of Bone in Bending
,”
J. Biomech.
,
6
(
1
), pp.
31
39
.10.1016/0021-9290(73)90035-3
28.
Chen
,
Y.
,
Yang
,
D.
,
Ma
,
Y.
,
Tan
,
X.
,
Shi
,
Z.
,
Li
,
T.
, and
Si
,
H.
,
2015
, “
Experimental Investigation on the Mechanical Behavior of Bovine Bone Using Digital Image Correlation Technique
,”
Appl. Bionics Biomech.
,
2015
, pp.
1
6
.10.1155/2015/609132
29.
Wang
,
X.
,
Mabrey
,
J. D.
, and
Agrawal
,
C. M.
,
1998
, “
An Interspecies Comparison of Bone Fracture Properties
,”
J. Biomed. Mater. Eng.
,
8
(
1
), pp.
1
9
.10.1016/S8756-3282(98)00071-4
30.
Kim
,
J. H.
,
Niinomi
,
M.
,
Akahori
,
T.
, and
Toda
,
H.
,
2007
, “
Fatigue Properties of Bovine Compact Bones That Have Different Microstructure
,”
Int. J. Fatigue
,
29
(
6
), pp.
1039
1050
.10.1016/j.ijfatigue.2006.09.018
31.
Lin
,
Z. X.
,
Xu
,
Z. H.
,
An
,
Y. H.
, and
Li
,
X.
,
2016
, “
In Situ Observation of Fracture Behavior of Canine Cortical Bone Under Bending
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
62
, pp.
361
367
.10.1016/j.msec.2016.01.061
32.
Launey
,
M. E.
,
Buehler
,
M. J.
, and
Ritchie
,
R. O.
,
2010
, “
On the Mechanistic Origins of Toughness in Bone
,”
Annu. Rev. Mater. Res.
,
40
(
1
), pp.
25
53
.10.1146/annurev-matsci-070909-104427
33.
Li
,
X.
,
An
,
Y. H.
,
Wu
,
Y. D.
,
Song
,
Y. C.
,
Chao
,
Y. J.
, and
Chien
,
C. H.
,
2007
, “
Microindentation Test for Assessing the Mechanical Properties of Cartilaginous Tissues
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
80
, pp.
25
31
.10.1002/jbm.b.30564
You do not currently have access to this content.