Abstract

The purpose of this investigation was to analyze the impact of differential steering of a wheelchair with a pushrim on changes in the position of the body's center of gravity. The method assumed measuring the wheelchair trajectory and the body's center of gravity and determining the transverse relocation of the measured body's center of gravity in relation to a point on the wheelchair trajectory. Twenty-seven measurement tests which demonstrated various wheelchair trajectories were carried out within the investigation. The trajectories were 10 to 15 m long and involved moving forward (test 2), reversing (test 3), turning left (test 1) and right (test 4). The factor of deviation of the center of gravity of human body from the wheelchair trajectory was determined for selected characteristic turning maneuvers. The measured values ranged from 51 to 192 mm. The impact of the wheelchair trajectory on the position of the body's center of gravity was demonstrated as a result of this investigation. Consequently, a trajectory deviation factor for relocation of the human body weight on one side of the wheelchair has been demonstrated.

References

1.
Boninger
,
M. L.
,
Cooper
,
R. A.
,
Robertson
,
R. N.
, and
Shimada
,
S. D.
,
1997
, “
Three-Dimensional Pushrim Forces During Two Speeds of Wheelchair propulsion
,”
Am. J. Phys. Med. Rehabil.
,
76
(
5
), pp.
420
426
.10.1097/00002060-199709000-00013
2.
Boninger
,
M. L.
,
Baldwin
,
M.
,
Cooper
,
R. A.
,
Koontz
,
A.
, and
Chan
,
L.
,
2000
, “
Manual Wheelchair Pushrim Biomechanics and Axle Position
,”
Arch. Phys. Med. Rehabil.
,
81
(
5
), pp.
608
613
.10.1016/S0003-9993(00)90043-1
3.
Marszałek
,
J.
,
Kosmol
,
A.
,
Mróz
,
A.
,
Wiszomirska
,
I.
,
Fiok
,
K.
, and
Molik
,
B.
,
2018
, “
Physiological Parameters Depending on Two Different Types of Manual Wheelchair Propulsion
,”
Assistive Technol.
, pp.
1
7
.10.1080/10400435.2018.1529005
4.
Boninger
,
M. L.
,
Souza
,
A. L.
,
Cooper
,
R. A.
,
Fitzgerald
,
S. G.
,
Koontz
,
A. M.
, and
Fay
,
B. T.
,
2002
, “
Propulsion Patterns and Pushrim Biomechanics in Manual Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
,
83
(
5
), pp.
718
723
.10.1053/apmr.2002.32455
5.
Koontz
,
A. M.
,
Cooper
,
R. A.
,
Boninger
,
M. L.
,
Souza
,
A. L.
, and
Fay
,
B. T.
,
2002
, “
Shoulder Kinematics and Kinetics During Two Speeds of Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
,
39
(
6
), pp.
635
650
.https://www.rehab.research.va.gov/jour/02/39/6/pdf/koontz.pdf
6.
Brubaker
,
C. E.
,
1986
, “
Wheelchair Prescription: An Analysis of Factors That Affect Mobility and Performance
,”
J. Rehabil. Res. Dev.
,
23
(
4
), pp.
19
26
.https://www.rehab.research.va.gov/jour/86/23/4/pdf/brubaker.pdf
7.
Wieczorek
,
B.
,
Górecki
,
J.
,
Kukla
,
M.
, and
Wojtokowiak
,
D.
,
2017
, “
The Analytical Method of Determining the Center of Gravity of a Person Propelling a Manual Wheelchair
,”
Procedia Eng.
,
177
, pp.
405
410
.10.1016/j.proeng.2017.02.237
8.
Carlson
,
C. R.
, and
Gerdes
,
J. C.
,
2003
, “
Optimal Rollover Prevention With Steer by Wire and Differential Braking
,”
ASME
Paper No. IMECE2003-41825.10.1115/IMECE2003-41825
9.
Geonea
,
I.
, and
Dumitru
,
N.
,
2016
, “
Motion Analysis of a Robotic Wheelchair
,”
Advances in Robot Design and Intelligent Control
,
Springer
,
Cham, Switzerland
, pp.
471
479
.10.1007/978-3-319-21290-6_47
10.
Hwang
,
S.
,
Lin
,
Y. S.
,
Hogaboom
,
N. S.
,
Wang
,
L. H.
, and
Koontz
,
A. M.
,
2017
, “
Relationship Between Linear Velocity and Tangential Push Force While Turning to Change the Direction of the Manual Wheelchair
,”
Biomed. Eng.
,
62
(
4
), pp.
439
445
.10.1515/bmt-2015-0173
11.
Koontz
,
A. M.
,
Roche
,
B. M.
,
Collinger
,
J. L.
,
Cooper
,
R. A.
, and
Boninger
,
M. L.
,
2009
, “
Manual Wheelchair Propulsion Patterns on Natural Surfaces During Start-Up Propulsion
,”
Arch. Phys. Med. Rehabil.
,
90
(
11
), pp.
1916
1923
.10.1016/j.apmr.2009.05.022
12.
Moss
,
A. D.
,
Fowler
,
N. E.
, and
Tolfrey
,
V. L.
,
2003
, “
A Telemetry-Based Velocometer to Measure Wheelchair Velocity
,”
J. Biomech.
,
36
(
2
), pp.
253
257
.10.1016/S0021-9290(02)00366-4
13.
Moss
,
A. D.
,
Fowler
,
N. E.
, and
Goosey-Tolfrey
,
V. L.
,
2005
, “
The Intra-Push Velocity Profile of the Over-Ground Racing Wheelchair Sprint Start
,”
J. Biomech.
,
38
(
1
), pp.
15
22
.10.1016/j.jbiomech.2004.03.022
14.
Coutts
,
K. D.
,
1990
, “
Kinematics of Sport Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
,
27
(
1
), pp.
21
26
.10.1682/JRRD.1990.01.0021
15.
Benda
,
B. J.
,
Riley
,
P. O.
, and
Krebs
,
D. E.
,
1994
, “
Biomechanical Relationship Between Center of Gravity and Center of Pressure During Standing
,”
IEEE Trans. Rehabil. Eng.
,
2
(
1
), pp.
3
10
.10.1109/86.296348
16.
Kirby
,
R. L.
,
Sampson
,
M. T.
,
Thoren
,
F. A.
, and
MacLeod
,
D. A.
,
1995
, “
Wheelchair Stability: Effect of Body Position
,”
J. Rehabil. Res. Dev.
,
32
(
4
), pp.
367
372
.https://www.rehab.research.va.gov/jour/95/32/4/pdf/kirby.pdf
17.
Lemaire
,
E. D.
,
Lamontagne
,
M.
,
Barclay
,
H. W.
,
John
,
T.
, and
Martel
,
G.
,
1991
, “
A Technique for the Determination of Center of Gravity and Rolling Resistance for Tilt-Seat Wheelchairs
,”
J. Rehabil. Res. Dev.
,
28
(
3
), pp.
51
58
.10.1682/JRRD.1991.07.0051
18.
Sawicki
,
P.
,
Waluś
,
K. J.
, and
Warguła
,
Ł.
,
2018
, “
The Comparative Analysis of the Rolling Resistance Coefficients Depending on the Type of Surface—Experimental Research
,”
Transport Means 2018: Proceedings of the 22nd International Scientific Conference
, Trakai, Lithuania, Oct. 3–5, Part 1, pp.
434
441
.https://www.researchgate.net/publication/328190738_The_comparative_analysis_of_the_rolling_resistance_coefficients_depending_on_the_type_of_surface_-_experimental_research
19.
Hernandez
,
V.
,
Rezzoug
,
N.
,
Gorce
,
P.
, and
Venture
,
G.
,
2018
, “
Wheelchair Propulsion: Force Orientation and Amplitude Prediction With Recurrent Neural Network
,”
J. Biomech.
,
78
, pp.
166
171
.10.1016/j.jbiomech.2018.07.034
20.
Wieczorek
,
B.
,
2018
, “
A Device for Simulating Operating Conditions and Measuring Dynamic Parameters of a Wheelchair
,” Poland Patent No. p.
424482
.
21.
Wieczorek
,
B.
,
2016
, “
Multi-Speed Gear Hub for Manual Wheelchairs
,” Poland Patent No. PL 223142.
22.
Huntemann
,
A.
,
Demeester
,
E.
,
Nuttin
,
M.
, and
Van Brussel
,
H.
,
2008
, “
Online User Modeling With Gaussian Processes for Bayesian Plan Recognition During Power-Wheelchair Steering
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
285
292
.10.1109/IROS.2008.4651040
23.
Haycock
,
G. B.
,
Schwartz
,
G. J.
, and
Wisotsky
,
D. H.
,
1978
, “
Geometric Method for Measuring Body Surface Area: A Height-Weight Formula Validated in Infants, Children, and Adults
,”
J. Pediatr.
,
93
(
1
), pp.
62
66
.10.1016/S0022-3476(78)80601-5
24.
Richter
,
W. M.
,
2001
, “
The Effect of Seat Position on Manual Wheelchair Propulsion Biomechanics: A Quasi-Static Model-Based Approach
,”
Med. Eng. Phys.
,
23
(
10
), pp.
707
712
.10.1016/S1350-4533(01)00074-1
25.
Robertson
,
R. N.
,
Boninger
,
M. L.
,
Cooper
,
R. A.
, and
Shimada
,
S. D.
,
1996
, “
Pushrim Forces and Joint Kinetics During Wheelchair Propulsion
,”
Arch. Phys. Med. Rehabil.
,
77
(
9
), pp.
856
864
.10.1016/S0003-9993(96)90270-1
26.
de Groot
,
S.
,
Vegter
,
R. J.
, and
van der Woude
,
L. H.
,
2013
, “
Effect of Wheelchair Mass, Tire Type and Tire Pressure on Physical Strain and Wheelchair Propulsion Technique
,”
Med. Eng. Phys.
,
35
(
10
), pp.
1476
1482
.10.1016/j.medengphy.2013.03.019
27.
Van der Woude
,
L. H. V.
,
Geurts
,
C.
,
Winkelman
,
H.
, and
Veeger
,
H. E. J.
,
2003
, “
Measurement of Wheelchair Rolling Resistance With a Handle Bar Push Technique
,”
J. Med. Eng. Technol.
,
27
(
6
), pp.
249
258
.10.1080/0309190031000096630
You do not currently have access to this content.