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Identification of Postural
Controllers in Human
Standing Balance
Standing balance is a simple motion task for healthy humans but the actions of the central
nervous system (CNS) have not been described by generalized and sufficiently sophisti-
cated control laws. While system identification approaches have been used to extracted
models of the CNS, they either focus on short balance motions, leading to task-specific
control laws, or assume that the standing balance system is linear. To obtain comprehen-
sive control laws for human standing balance, complex balance motions, long duration
tests, and nonlinear controller models are all needed. In this paper, we demonstrate that
trajectory optimization with the direct collocation method can achieve these goals to
identify complex CNS models for the human standing balance task. We first examined this
identification method using synthetic motion data and showed that correct control param-
eters can be extracted. Then, six types of controllers, from simple linear to complex non-
linear, were identified from 100 s of motion data from randomly perturbed standing.
Results showed that multiple time-delay paths and nonlinear properties are both needed
in order to fully explain human feedback control of standing balance.
[DOI: 10.1115/1.4049159]

1 Introduction

Standing balance is a simple motion task which allows
researchers to easily investigate how the human central nervous
system (CNS) uses feedback control. Understanding the CNS in
human motions can not only help clinical treatments of movement
disorders but also can inspire the design of controllers for assistive
devices, such as exoskeletons and prostheses, to generate human-
like movements. Numerous studies have treated the CNS in
human standing balance as a postural feedback controller and sys-
tem identification methods have been used to find its mathemati-
cal model [1–13]. In the majority of these studies, external
mechanical stimuli, such as push/pull forces and standing plat-
form motions, were used to evoke participants’ body sway
motions at variety statuses. Indirect identification approaches
were normally used, in which a closed-loop mathematical model
of the human standing balance system is required. It has been
reported that the indirect approach (closed-loop system identifica-
tion) can avoid the bias caused by the open-loop identifications
that just rely on the information of CNS inputs (joint motions) and
outputs (joint torques) [14,15]. Both nonparametric and paramet-
ric system identification methods have been used. However, limi-
tations exist in both study directions which prevented the
identification of good generalized models of the postural control
system in the CNS.

In nonparametric postural controller identifications, the CNS is
described by a frequency response function (FRF) [11,12,16]. The
frequency domain identification method was often used to find the
FRF of the closed-loop model, including the CNS that can best
explain the experimental data [15,17–20]. Because the length of
data does not matter when transferring to frequency domain
through the Fourier transformation [21], this approach can be

easily applied on long duration standing balance data that
recorded from experiments where the random or multisine exter-
nal perturbations were applied. In general, longer duration motion
data can provide more information about the CNS, which allows
identification of more complex, or more generalized models.
However, the frequency domain approach requires multiple per-
turbation sources to identify a multi-input and multi-output system
[21], which is typical for human standing balance task since at
least the ankle and hip strategies were used. Developing the hard-
ware to provide perturbations across multiple body segments is
difficult for both research and clinical applications. In addition,
this approach treats the system as linear, which eliminates the
ability to identify nonlinear properties of the CNS. Nonlinear
effects, such as threshold and saturation, are known to exist in
sensory and spinal circuits. Furthermore, the human body has
many nonlinear components, e.g., nonlinear multibody dynamics
and nonlinear muscle properties. Studies have shown that healthy
humans use different feedback control gains to control posture
under different amplitudes of external perturbations [4,7], indicat-
ing that the generalized standing balance controller is nonlinear.

Parametric identification has been used to find gains and other
parameters in a predefined control structure that best explain the
experimental data. It has the advantage that a single stimulus or
perturbation source can be used [22]. Trajectory optimization can
be used to solve this identification problem [4], to find controller
parameters that best explain the measured output of the system. In
this approach, both the plant dynamics and the CNS controller can
be nonlinear since identification is performed in the time-domain.
However, only simple linear controllers have been identified,
using data from short duration balance motions that were per-
turbed by short ramp displacements [4,7,23]. One difficulty is that
the shooting method [24] used in these studies have difficulty with
long duration trajectory optimizations, as the standing balance is
naturally an unstable system. Eigenvalue constraints have been
used which increased the chance of getting stable motions [4], but
these are not necessary conditions for the stability of nonlinear
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systems. Shooting methods also have a tendency to find local
optima [25] when data have detailed features in the time domain.
Identifications on long duration data are essential to get general-
ized motion controllers that can explain human responses in dif-
ferent circumstances, such as under multiple ramp perturbations
that have different amplitudes. Only recently, parametric identifi-
cation has been done on long duration randomly perturbed balance
data [22]. However, the objective was to compare the FRFs in the
frequency domain, which still requires the assumption that the
system is linear.

The goal of this study is to show that trajectory optimization
with the direct collocation method can identify generalized and
nonlinear standing balance controllers from long duration motion
data. Direct collocation has recently been used in predictive simu-
lations of human movement [26–28], performing better than
shooting methods, but to our knowledge, has not been used for
identification of human feedback control. Therefore, in this paper
we first validate this method by doing identification on simulated
data where the feedback control parameters are known (simulation
study). In the simulation study, we also investigated the effect of
data length on the accuracy of identified control gains. Then, we
identify six types of feedback controller, from simple linear to
complex nonlinear, on 100 s of measured human standing balance
motions (experimental study).

2 Methods

An indirect identification approach was used in this study
[3,4,17,22], in which a mathematical model was created to repre-
sent the standing balance system and an optimization method was
used to fit to experimental data by optimizing the model parame-
ters. The mathematical model was a closed-loop system, where a
body dynamics (plant) model and a feedback controller model
were both included. Body dynamics was simplified as a double-
link pendulum without the knee joint, since ankle and hip strat-
egies are mostly used for standing balance [29,30]. Equations of
the body dynamics model can be found in Appendix A. The feed-
back control parameters P were optimized to produce the best fit
between the output of the simulated system and the experimental
data (Fig. 1).

2.1 Standing Balance Experiments. Experiments were per-
formed on eight able-bodied participants (seven males, one
female, age 18–35 years) with approval from the Institutional
Review Board of Cleveland State University (study No. IRB-

FY2018-40). Participants were asked to stand on an R-Mill instru-
mented treadmill (Forcelink, Amsterdam, the Netherlands) with
their arms crossed in front of their chest and instructed to keep
balance without taking a step. The perturbation consisted of
random anterior–posterior platform motions. The perturbation
signal was designed using random square pulses with five posi-
tion values ([�5, �2.5, 0, 2.5, 5] cm), and six durations ([0.25,
0.5, 0.75, 1.0, 1.25, 1.5] s). Amplitudes and durations were ran-
domly combined to generate a 300 s perturbation signal. This
random signal was sent to the treadmill control module in the
D-FLOW software (Version 3.26.0, Motek, Amsterdam, the Neth-
erlands) and executed through the treadmill’s “sway” actua-
tion. Twenty-seven reflective markers [31] were placed on each
participant to record their reactions using a 10-camera motion
capture system (Osprey, Motion Analysis Corp., Rohnert Park,
CA). Hip and ankle joint angles were calculated from these
recorded marker data after applying a double second-order But-
terworth filter with the cutoff frequency of 16 Hz. Dynamic
parameters of the human body model were generated for each
participant, in which the segment lengths were calculated
based on the recorded marker data and mass properties were
calculated based on the body weight and the anthropometry
table of Winter [32]. Five markers were placed on the rigid
frame of the treadmill to record the executed sway motion.
After applying the 16 Hz low pass filter, acceleration was cal-
culated using a three-point finite difference on the averaged
coordinates of these five markers [33]. All data were sampled
at 100 Hz.

The experiment consisted of a 300 s quiet standing trial, fol-
lowed by a 300 s perturbation trial. Then participants were asked
to sit down and rest for 300 s. After the rest period, a 300 s pertur-
bation trial, using the same perturbation as the previous trial, was
recorded. Finally, participants were asked to do another trial of
300 s quiet standing. General information of the participants are
shown in Table 1. The detailed description of the experiment, col-
lected data, data processing, as well as its preliminary analysis
were included in the Zenodo project.2

2.2 Simulated Motion Data. The identification method was
first validated through a simulation study. The closed-loop mathe-
matical model in the indirect identification platform was used to
generate simulated data. The dynamic parameters of participant
4 were used for the double-link pendulum model. The perturba-
tion input was the measured platform acceleration in the first
perturbation trial of participant 4. The postural feedback control-
ler, a full state feedback proportional-derivative (PD) controller
with time delay, was the same as in the identification study by
Goodworth and Peterka [22]. This controller is specified in Eq.
(3). Pink noise (similar to Goodworth’s study) was added at the
motion feedback loop of each joint as sensor noise. One hundred
seconds of simulation data was generated using the midpoint

Fig. 1 The indirect approach of standing balance controller
identification. Identifications were treated as trajectory optimi-
zation problems, in which the control parameters were opti-
mized to minimize the difference between the model output and
the experimental data.

Table 1 Information of the eight participants in the order of
data collection date

Id Gender Age (yr) Height (m) Mass (kg)

1 Male 22 1.60 74.29 6 0.26
2 Female — — 48.37 6 0.21
3 Male 18 1.80 79.12 6 0.20
4 Male 27 1.78 63.10 6 0.16
5 Male 32 1.79 70.56 6 0.19
6 Male 35 1.65 58.24 6 0.27
7 Male 28 1.75 68.75 6 0.17
8 Male 27 1.63 60.33 6 0.19

2https://doi.org/10.5281/zenodo.3819630
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Euler method [34] and sampled at 100 Hz. Ten different realiza-
tions of sensor noise (with different random number seeds) were
used to simulate ten different trials. Figure 2 shows one trial of
simulated motion data with one realization of sensor noise under
the external perturbation.

2.3 Controller Identification on Simulated Data. Control-
ler identifications on the simulated motion data were done
through the described indirect approach. Five lengths (10, 30,
50, 70, and 90 s) of the simulation data (Fig. 2) were selected for
the identification to check the effects of data length on the identi-
fication results. Lower and upper bounds of the identified control
parameters were set as 0 and 2 times their true values. Ten opti-
mizations were performed on each controller identification prob-
lem (controller identification on each period of data) with
random initial guesses within the bounds to increase the chance
of finding global optimum. The identification result with the
lowest objective function among ten optimizations was selected
as the best result for the identification problem and was shown in
the results section.

2.4 Controller Identification on Experimental Data. One
hundred seconds of experimental data was used from the middle
of each perturbation trial to avoid the adaptation period at the
beginning, while also minimizing the effect of fatigue at the end.
The quiet standing trials were not used. Data from the last six par-
ticipants (Table 1) were used, since the first two participants were
in the preliminary testing of the experiment protocol. In total, 12
periods of experimental data (six participants and two perturbation
trials for each participant) were used to identify the standing bal-
ance controllers.

Six controller types, from simple linear to complex nonlinear,
were identified on each selected data trial. Four of them are linear:
the PD controller, the full-state proportional-derivative (FPD)
controller, the full-state proportional-derivative feedback with
time delay controller (FPDTD) (which was used by Goodworth
[22]), and the linear state combination with time delay (LSCTD)
controller. The other two are nonlinear: the neural network (NN)
controller and the neural network with time delay (NNTD)
controller.

The linear controllers were mathematically described as:
Proportional-derivative controller (six parameters)

T1ðtÞ

T2ðtÞ

2
664

3
775 ¼

K11 B11 0 0

0 0 K22 B22
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(1)

Full-state proportional-derivative controller (ten parameters)
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Full-state proportional-derivative feedback with time delay con-
troller (14 parameters)
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Linear state combination with time delay controller (34
parameters)
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where T1ðtÞ and T2ðtÞ are the ankle and hip joint torques; h1ðtÞ
and h2ðtÞ are the ankle and hip joint angles; r1 and r2 are the refer-
ence angles of the ankle and hip joints; K11 and B11 are the pro-
portional and derivative gains for the ankle joint; K22 and B22 are
the proportional and derivative gains for the hip joint; K21 and B21

are the proportional and derivative gains for the ankle joint from
the hip joint angle and angular velocity feedback; K12 and B12 are
the proportional and derivative gains for the hip joint from the

Fig. 2 Simulated motion data with one realization of sensor
noise. Sensor noise 1 is for the ankle joint and 2 is for the hip
joint. Five data periods (10, 30, 50, 70, 90 s) were selected to
identify the feedback control parameters.
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ankle joint angle and angular velocity feedback; Kpas1 and Kpas2

are the passive proportional gains for the ankle and hip joints,
respectively; td1 and td2 are the delay time for the ankle and hip
joints in the FPDTD controller; h1ðt� i � DtÞ and h2ðt� i � DtÞ are
the inputs of the LSCTD controller, representing the ankle and hip
joint angles at i � Dt time prior to the current time t; Ki and Bi are
the proportional and derivative gains that multiply with the state
at i � Dt time prior to the current time t; and D is the number of
delayed state feedback paths. The number of time delays D was 3
and they were multiples of Dt¼ 60 ms.

The NN controller was defined as regular feed-forward neural
network [35] with one hidden layer and four hidden nodes. It is a
nonlinear controller (policy), since its activation function is the
smoothed leaky-ReLU function: f ðxÞ ¼ xþ 0:7ðx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ0:0001
p

2
Þ.

Inputs of the NN controller were the states of the closed-loop
model (two joint angles and two angular velocities) and a constant
node (unit input). The hidden layer included a constant node (unit
input) also. Outputs of the NN controller were the two joint tor-
ques. This controller had 30 parameters (weights) that were
optimized.

The NNTD controller also used the regular feed-forward neural
network but with one hidden layer and eight hidden nodes. Inputs
of the NNTD controller were the current state information and
time-delayed state feedback from 60, 120, and 180 ms prior, as in
the LSCTD controller. Outputs of the NNTD controller were the
two joint torques. The activation function used was the same as in
the NN controller. This controller had 154 parameters (weights)
that were optimized.

2.5 Trajectory Optimization With Direct Collocation. The
indirect identification approach mentioned above transforms
the identification problems into trajectory optimizations where the
state trajectories and control parameters were optimized at the
same time. The direct collocation method [36,37], rather than
the shooting method [38], was used to perform the trajectory opti-
mizations. The trajectories were represented by values at N dis-
crete time points and the Midpoint Euler approximation for state
derivative _x was used to convert the system dynamics into nonlin-
ear constraints. The controller identification problem can then be
written as a large-scale nonlinear program (NLP)

Find:

state trajectory: X ¼ fx1; x2;…; xNg
and control parameters: P

to minimize the objective function:

F ¼
XN

n¼1

hn;m
1 � hn

1

� �2 þ hn;m
2 � hn

2

� �2

2 � N
subject to:

system dynamics:

f
xiþ1 þ xi

2
;
xiþ1 � xi

h
;P;

aiþ1 þ ai

2

� �
¼ 0

i ¼ 1…N � 1ð Þ
and bounds on statet rajectories:

xlow � xi � xupp i ¼ 1…Nð Þ
and bounds on control parameters:

Plow � P � Pupp

(5)

where h is the time-step (20 ms); xi is the state at node i, com-
prised of ankle and hip joint angles and angular velocities:
x ¼ ½h1; _h1; h2; _h2�; hn;m

1 ; hn;m
2 are the measured joint angles at time

point n; f ðx; _x;P; aÞ ¼ 0 represents the dynamics of the closed-
loop model, with platform acceleration a(t). Details are provided
in Appendix A. The objective function, objective gradient,
dynamic constraints, and constraint gradients were coded in

Python (3.6.0). An interior point optimizer (Ipopt) [39] was used
to solve the large-scale nonlinear program. Optimizations of the
linear controllers were performed on a local laptop. The other
optimizations were performed on a Linux cluster in the Ohio
Supercomputer Center [40]. The optimization code can be found
in this GitHub repository.3

For each identification problem, ten optimizations were per-
formed with random initial guesses of control parameters. The
motion data were used as initial guess for the state trajectory. An
identification problem was defined as the identification of one
type of controller on one trial of experimental data. The result
with the lowest objective function was selected as the solution for
the identification problem. For the NNTD controller type, only
one initial guess was used for each identification problem due to
the long solution time. In total, 72 identification problems (12
periods of data and 6 types of controllers) were solved, resulting
in 612 optimizations.

For the PD and FPD controllers, stochastic identification [41]
was used to help identify practically stable controllers by enforc-
ing the closed-loop model generates practically stable motions
with multiple episodes of process noise. Two and three episodes
were used in the stochastic identifications for the PD and FPD
controllers, respectively.

3 Results

3.1 Identification Results on Simulated Data. Figure 3
shows the means and standard deviations of the identified control
gains among ten realizations of sensor noise (identified gains in
each realization of sensor noise were from the best fit result in ten
random initial guess optimizations). The leftmost bar in each sub-
plot indicates the “true” value of the corresponding control gain
that was used to generate the simulated motion data. The other
five bars from left to right in each subplot indicate the identified
control gains from five lengths of simulated data (10, 30, 50, 70,
and 90 s). In general, the identified control gains were close to the
true values, except for the two passive proportional gains. How-
ever, the differences between the true values and identified results
were small when adding the passive and active proportional con-
trol gains together (bottom two subplots). Another significant
result was that with the increase of the data length, the standard
deviations of identified gains among different realizations of sen-
sor noise were decreasing.

Bias errors and variability across ten noise realizations, for all
identified control parameters, are shown in Fig. 4. This result was
from the identification of 50 s of simulated data. The bias errors of
all identified parameters were less than 2.5% of the true values,
except the two passive proportional gains. The variations in iden-
tified control gains among ten realizations of noise were below
10% of the averaged values, except for the two passive propor-
tional gains.

3.2 Identification Results on Experimental Data. Figure 5
shows the root-mean-square (RMS) of the measured motions (first
two box plots) and the fits (difference) between data and the out-
puts from the identified closed-loop models with six controller
types (other box plots). With increasing controller complexity, the
RMS tended to decrease, indicating a better fit. The RMS value of
the PD controller was about half of the variation in the data, show-
ing that the PD controller can only explain about 50% of the var-
iance in standing posture. The RMS value of the NNTD controller
was about one fourth of the variation in experimental data, show-
ing that the NNTD controller can explain about 75% amplitude of
the standing balance motion. Considering there was only one opti-
mization in the NNTD controller identification, whereas the PD
controller result was the best of ten optimizations, the RMS of

3https://github.com/HuaweiWang/Dissertation_Work/tree/master/Chapter5
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NNTD controller could be even lower. Fits of ankle and hip joint
motions of participant 3 are shown in Appendix B.

The identified control gains of the PD, FPD, and FPDTD con-
trollers are shown in Figs. 6–8. Before averaging, gains were nor-
malized to a typical male with weight of 70 kg and height of
1.75 m [42]. Joint torques were normalized by the product of body
mass and height; joint angular velocities were normalized by the
square root of gravity divided by the body height. In general, the
identified feedback control gains were mostly consistent among
subjects and two perturbation trials. In all three types of control-
lers, proportional control gains K11 (K11 þ Kpas1) of the ankle joint
had larger values than the hip joint’s proportional gains K22

(K22 þ Kpas2). The K21;B21;K12;B12 in the FPD and FPDTD con-
troller types were significantly different from zero. In the FPDTD
controller, the time delay parameter of the ankle joint was smaller
than the hip joint’s, which is not as expected, as the distance for
the nervous signal translation is longer for ankle joint so that
larger delay time should exist. The proportional feedback gains
K22 (K22 þ Kpas2) of the hip joint had higher values in the second

perturbation trial than the first perturbation trial. Parameter values
for the NN and NNTD controllers are not shown because no
meaningful interpretation is possible.

4 Discussion

4.1 Identifications on Simulated Data. Identifications on
simulated data showed that the identification method (trajectory
optimization with direct collocation) was able to find correct con-
trol parameters. More importantly, the identified control gains had
less bias error and variation comparing to Goodworth and Peter-
ka’s identification study [22]. One possible reason is that the
external stimulus in this study was much larger. The peak value of
the stimulus in their study was only 5 N�m. We used a stimulus
which the peak value of equivalent torque perturbation reached
around 30 N�m for the hip joint and 50 N�m for the ankle joint. In
general, large perturbation generates a low noise-to-signal ratio
(NSR) which helps find true control parameters. This indicates

Fig. 3 Identified control gains on simulated motion data
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Fig. 4 Bias errors and variations of the identified control gains in the simulation study

Fig. 5 RMS of the experimental data (first two box plots) and the fits between experimental
data and the motion output of the closed-loop mathematical model with the six controller types
(other box plots)

Fig. 6 Identified PD control gains in the experimental study Fig. 7 Identified FPD control gains in the experimental study
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that the external stimulus used in this study was large enough to
collect useful human reaction data from experiments. This is con-
sistent with recent results of Schut et al. [43] who showed that the
10 cm peak-to-peak perturbation amplitude is sufficient to collect
low NSR data in a standing balance experiment.

Another possible reason that Goodworth and Peterka’s results
have larger variation is their frequency-domain approach to
parameter optimization. Optimizations were performed to fit the
FRF of the closed-loop model to the FRF of the experimental
data. It is hard to calculate the analytical derivatives of the FRF
with respect to the identified parameters, which limited the opti-
mization performance. In our work, the gradient of the objective
function and the Jacobian matrix of dynamic constraints were pro-
vided analytically helped the optimizer quickly find good
solutions.

4.2 Identifications on Experimental Data. The RMS fit
errors for the six controller types suggest that both multiple time
delay paths and nonlinear properties are needed to fully explain
the human standing balance control under random external pertur-
bations. The FPD controller had lower RMS than the PD control-
ler indicating that cross-joint feedback is important for human
standing balance. However, the FPDTD controller did not have a
significant lower RMS than the FPD controller, suggesting that
the additional time delay component was not sufficient to better
explain the CNS. The LSCTD controller had a more generalized
time delay structure, which generated better fit with experimental
data than the FPDTD controller with one time delay for each tor-
que. The NN controller also had lower RMS than the FPD control-
ler, showing the importance of nonlinearity in the controller.
Finally, the NNTD controller had both generalized time delay and
nonlinearity, which resulted the lowest RMS among all six types
of controllers. This helps explain previous studies [4,44] which
found that control gains depended on the amplitude of the ramp
perturbations, suggesting nonlinearity.

Feedback control gains identified in this study were similar to
those found by Park et al. [4]. The proportional control gains were
larger for ankle torque than for the hip torque in all shown control-
ler types, possibly because both need to balance the large trunk
mass, which is farther away from the ankle. The nonzero cross-
joint control gains confirmed that humans use cross-joint feedback
to control standing balance. Cross-joint feedback is likely neural,
rather than due to elastic properties of two-joint muscles because
there are no muscles that cross both hip and ankle.

Identification results from the second perturbation trial were gen-
erally more consistent between participants than those from the first
perturbation trial. We observed that participants had a relatively
smaller body sway motion in second trial, indicating that partici-
pants had adapted and no longer needed to explore to optimize their
performance. This learning effect may also be responsible for the
larger hip feedback gains in the second perturbation trial.

Due to the long computation time, only one optimization was
applied in the NNTD controller identification, possibly resulting
in a local minimum. With a more thorough optimization, the fit
might even have been better. Neural network controllers have a
general nonlinear property which is good for testing the potential of
nonlinear controllers. However, it may not be a good controller in
practice because the control performance is not predictable beyond
the observed range of joint motions. Controller performance could
be evaluated by simulating the identified system with other pertur-
bation inputs that were not used for the identification and compar-
ing to measured motions. This was not included in this study
because the NNTD controller was just used to demonstrate the abil-
ity of the proposed identification method. For practical nonlinear
controllers, one might also use deterministic nonlinear structures,
such as polynomial functions, in which the identified controller
parameters have a physical meaning and their performance is more
predictable when operating in different conditions.

The identified cross-joint control gains K12 in the FPD control-
ler type were mostly negative, which suggesting a positive cross-
joint feedback. However, the cross-joint feedback gains were all
positive in the identified FPDTD controllers. This might be
because the FPD controller is too simple to represent the human
CNS. We would suggest future studies can examine to what extent
simple models can extract unbiased information about the control
system.

The identified controllers in the experimental study were all
from male participants (the last six). Thus, the control parameters
showed in this paper may not represent the overall properties of
the standing balance CNS of all humans due to the potential dif-
ferences across gender. However, this paper is mainly focusing on
proposing a new identification method. The standing balance con-
trollers of females can be directly identified through the proposed
identification method once the motion data of female participants
was collected.

In the experimental study, only the middle period (150–250 s)
of the recorded balance data was used for the controller identifica-
tion. This was done because each trial started with a slow drift in

Fig. 8 Identified FPDTD control gains in the experimental study
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the posture, possible due to an adaptation process. This was
needed because we assume constant controller parameters. The
initial period, however, may contain important information that is
clinically relevant. Proper identification would require modeling
the dynamics of the adaptation process, which is conceptually
possible, but beyond the scope of this study and left for future
work.

The identification approach used in this study does not require
assuming a linear model and can extract human postural control-
lers from a long duration experimental data. As far as we aware, it
is the first time that complex nonlinear controllers were identified
from 100 s of standing balance data under random perturbations.
This method can be applied to more complex controllers and
motion tasks, such as identification of balance control during
human walking. We would like to encourage others who are try-
ing to understand the human motion control using this identifica-
tion method to explore complex control structures from complex
human motions.

5 Conclusions

In this work, we showed that trajectory optimization with the
direct collocation method can correctly identify control parame-
ters from synthetic motion data. Using 100 s of standing balance
kinematic data, under random perturbations, six types of postural
controllers, from simple linear to complex nonlinear, were identi-

fied. Identification results suggested that the human CNS, even in
the simple standing balance task, has nonlinear properties and
multiple time delay paths.

Acknowledgment

Thanks go to Dr. Jason Moore also, for the fundamental work
of the postural controller identification and toolboxes that he
developed and contributed: Opty, Sympy, and PyDy.

Funding Data

� National Science Foundation (Grants Nos. 1344954 and
1544702; Funder ID: 10.13039/100000001).

Appendix A: Dynamic Model of the Human Standing

Balance

The system model of human standing balance includes two
components: human body dynamic model and the postural feed-
back controller (Fig. 1). The human body was simplified to a two-
link pendulum. The standing plate is a movable base where the
displacement perturbation was applied. The dynamic equation of
the human model is

ðIL þ IT þ d2
L � mL þ mT � ðd2

T þ 2dTlL cosðh2Þ þ l2
LÞÞ ðIT þ dT � mT � ðdT þ lT cosðh2ÞÞÞ

ðIT þ dT mT � ðdT þ lT � cosðh2ÞÞÞ IT þ d2
T � mT

" #
€h1

€h2

" #

þ
dT � lL � mT � _h

2

1 sinðh2Þ � dTlT � mT � ð _h1 þ _h2Þ2 � sinðh2Þ

dT � lL � mT � _h
2

1 sinðh2Þ

2
4

3
5

þ
�dL � mT sinðh1Þ � dT � mT � sinðh1 þ h2Þ � lL � mT � sinðh1Þ

�dT � mT � sinðh1 þ h2Þ

" #
� g

þ
�dL � mT cosðh1Þ � dT � mT � cosðh1 þ h2Þ � lL � mT � cosðh1Þ

�dT � mT � cosðh1 þ h2Þ

" #
� a

¼
s1

s2

" #

(A1)

where h1 and h2 represent the ankle and hip joint angles, respec-
tively; lL represents the length of leg; mL and mT represent the
masses of leg and trunk; dL and dT represent the center of mass
location in leg and trunk; s1 and s2 represent the joint torques at
ankle and hip joints; g is the gravity; and a is the acceleration of
the standing plate due to external perturbation, defined positive in
the posterior direction.

In the identification study, the joint torque s1 and s2 were gen-
erated by state feedback controllers

s1

s2

2
4

3
5 ¼ f1ðh1; h2; h1; h2;P1Þ

f2ðh1; h2; h1; h2;P2Þ

2
4

3
5 (A2)

where f1 and f2 are the control equations of the ankle and hip
joints; P1and P2 represent the control gains inside the ankle and
hip controllers.

By putting the state feedback controller into equation (A1), the
closed-loop dynamic model of the human standing balance system
can be described in this format

MðqÞ � €q þ Cðq; _qÞ þ GðqÞ þ Dðq; aÞ � Fðq; _q;PÞ ¼ 0 (A3)

where q¼ [h1; h2] includes the joint angles of the system; M(q) is
the mass matrix; Cðq; _qÞ represents the Coriolis and centrifugal
forces; G(q) is the gravity term; D(q;a) is the joint torque term
that caused by mechanical perturbation; and Fðq; _q;PÞ is the state
feedback control term.

In trajectory optimizations, this dynamic equation was imple-
mented as a equality constraint. A more generalized format of the
system dynamics can be wrote as

f ðx; _x;P; aÞ ¼ 0 (A4)

where x ¼ ½q; _q� represents the system state.

Appendix B: Motion Fit of the Identified Six Types of

Controllers

Motion fits of the identified six types of controllers of participant 3
are shown here (Fig. 9). Top two subplots are the external stimulus
signal (standing platform translation). Left side subplots are the ankle
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joint motion fits. Right side subplots are the hip joint motion fits. It is
clear that the fits got better with the increase of the controller
complexity.
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