Abstract

Transfemoral amputee often encounters reduced toe clearance resulting in trip-related falls. Swing-phase joint angles have been shown to influence the toe clearance; therefore, training intervention that targets shaping the swing phase joint angles can potentially enhance toe clearance. The focus of this study was to investigate the effect of the shift in the location of the center of pressure (CoP) during heel strike on modulation of the swing-phase joint angles in able-bodied participants (n = 6) and transfemoral amputees (n = 3). We first developed a real-time CoP-based visual feedback system such that participants could shift the CoP during treadmill walking. Next, the kinematic data were collected during two different walking sessions-baseline (without feedback) and feedback (shifting the CoP anteriorly/posteriorly at heel strike to match the target CoP location). Primary swing-phase joint angle adaptations were observed with feedback such that during the midswing phase, posterior CoP shift feedback significantly increases (p < 0.05) the average hip and knee flexion angle by 11.55 deg and 11.86 deg, respectively, in amputees, whereas a significant increase (p < 0.05) in ankle dorsiflexion, hip and knee flexion angle by 3.60 deg, 3.22 deg, and 1.27 deg, respectively, compared to baseline was observed in able-bodied participants. Moreover, an opposite kinematic adaptation was seen during anterior CoP shift feedback. Overall, results confirm a direct correlation between the CoP shift and the modulation in the swing-phase lower limb joint angles.

References

1.
Lechler
,
K.
, and
Kristleifur
,
K.
,
2018
, “
The Importance of Additional Mid Swing Toe Clearance for Amputees
,”
Can. Prosthet. Orthotics J.
,
1
(
2
), pp. 1–7. 10.33137/cpoj.v1i2.30813
2.
Sensinger
,
J. W.
,
Nattaporn
,
I.
, and
Steven
,
A. G.
,
2013
, “
Contribution of Prosthetic Knee and Ankle Mechanisms to Swing-Phase Foot Clearance
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
21
(
1
), pp.
74
80
.10.1109/TNSRE.2012.2224885
3.
Kent
,
J. A.
,
Arelekatti
,
V. M.
,
Petelina
,
N. T.
,
Johnson
,
W. B.
,
Brinkmann
,
J. T.
,
Winter
,
A. G.
, and
Major
,
M. J.
,
2021
, “
Knee Swing Phase Flexion Resistance Affects Several Key Features of Leg Swing Important to Safe Transfemoral Prosthetic Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
965
973
.10.1109/TNSRE.2021.3082459
4.
Armannsdottir
,
A.
,
Tranberg
,
R.
,
Halldorsdottir
,
G.
, and
Briem
,
K.
,
2018
, “
Frontal Plane Pelvis and Hip Kinematics of Transfemoral Amputee Gait. Effect of a Prosthetic Foot With Active Ankle Dorsiflexion and Individualized Training–a Case Study
,”
Disability Rehabil. Assist. Technol.
,
13
(
4
), pp.
388
393
.10.1080/17483107.2017.1381187
5.
Moosabhoy
,
M. A.
, and
Gard
,
S. A.
,
2006
, “
Methodology for Determining the Sensitivity of Swing Leg Toe Clearance and Leg Length to Swing Leg Joint Angles During Gait
,”
Gait Posture
,
24
(
4
), pp.
493
501
.10.1016/j.gaitpost.2005.12.004
6.
Sup
,
F.
,
Varol
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
1
), pp.
71
78
.10.1109/TNSRE.2010.2087360
7.
Johnson
,
L.
,
De Asha
,
A. R.
,
Munjal
,
R.
,
Kulkarni
,
J.
, and
Buckley
,
J. G.
,
2014
, “
Toe Clearance When Walking in People With Unilateral Transtibial Amputation: Effects of Passive Hydraulic Ankle
,”
J. Rehabil. Res. Dev.
,
51
(
3
), pp.
429
438
.10.1682/JRRD.2013.05.0126
8.
Sam
,
M.
,
Hansen
,
A. H.
, and
Childress
,
D. S.
,
2004
, “
Characterisation of Prosthetic Feet Used in Low‐Income Countries
,”
Prosthet. Orthotics Int.
,
28
(
2
), pp.
132
140
.10.1080/03093640408726698
9.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2012
, “
Muscle and Prosthesis Contributions to Amputee Walking Mechanics: A Modeling Study
,”
J. Biomech.
,
45
(
13
), pp.
2271
2278
.10.1016/j.jbiomech.2012.06.008
10.
Cerqueira
,
A. S. O. D.
,
Yamaguti
,
E. Y.
,
Mochizuki
,
L.
,
Amadio
,
A. C.
, and
Serrão
,
J. C.
,
2013
, “
Ground Reaction Force and Electromyographic Activity of Transfemoral Amputee Gait: A Case Series
,”
Rev. Bras. Cineantropometria Desempenho Humano
,
15
(
1
), pp.
16
26
.10.5007/1980-0037.2013v15n1p16
11.
Vrieling
,
A. H.
,
Van Keeken
,
H. G.
,
Schoppen
,
T.
,
Otten
,
E.
,
Halbertsma
,
J. P. K.
,
Hof
,
A. L.
, and
Postema
,
K.
,
2008
, “
Gait Initiation in Lower Limb Amputees
,”
Gait Posture
,
27
(
3
), pp.
423
430
.10.1016/j.gaitpost.2007.05.013
12.
van Keeken
,
H. G.
,
Vrieling
,
A. H.
,
Hof
,
A. L.
,
Halbertsma
,
J. P.
,
Schoppen
,
T.
,
Postema
,
K.
, and
Otten
,
B.
,
2008
, “
Controlling Propulsive Forces in Gait Initiation in Transfemoral Amputees
,”
ASME J. Biomech. Eng.
,
130
(
1
), p. 011002.10.1115/1.2838028
13.
Lipfert
,
S. W.
,
Günther
,
M.
,
Renjewski
,
D.
, and
Seyfarth
,
A.
,
2014
, “
Impulsive Ankle Push-Off Powers Leg Swing in Human Walking
,”
J. Exp. Biol.
,
217
(
10
), pp.
1831
1228
.10.1242/jeb.107391
14.
Dean
,
J. C.
,
Bowden
,
M. G.
,
Kelly
,
A. L.
, and
Kautz
,
S. A.
,
2020
, “
Altered Post-Stroke Propulsion is Related to Paretic Swing Phase Kinematics
,”
Clin. Biomech.
,
72
, pp.
24
30
.10.1016/j.clinbiomech.2019.11.024
15.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
,
2001
, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
,
34
(
11
), pp.
1387
1398
.10.1016/S0021-9290(01)00105-1
16.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
1996
, “
The Influence of Muscles on Knee Flexion During the Swing Phase of Gait
,”
J. Biomech.
,
29
(
6
), pp.
723
733
.10.1016/0021-9290(95)00144-1
17.
Zmitrewicz
,
R. J.
,
Neptune
,
R. R.
, and
Sasaki
,
K.
,
2007
, “
Mechanical Energetic Contributions From Individual Muscles and Elastic Prosthetic Feet During Symmetric Unilateral Transtibial Amputee Walking: A Theoretical Study
,”
J. Biomech.
,
40
(
8
), pp.
1824
1831
.10.1016/j.jbiomech.2006.07.009
18.
Silverman
,
A. K.
,
Fey
,
N. P.
,
Portillo
,
A.
,
Walden
,
J. G.
,
Bosker
,
G.
, and
Neptune
,
R. R.
,
2008
, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait Posture
,
28
(
4
), pp.
602
609
.10.1016/j.gaitpost.2008.04.005
19.
Fey
,
N. P.
,
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2010
, “
The Influence of Increasing Steady-State Walking Speed on Muscle Activity in Below-Knee Amputees
,”
J. Electromyogr. Kinesiol.
,
20
(
1
), pp.
155
161
.10.1016/j.jelekin.2009.02.004
20.
Yang
,
L.
,
Solomonidis
,
S. E.
,
Spence
,
W. D.
, and
Paul
,
J. P.
,
1991
, “
The Influence of Limb Alignment on the Gait of Above-Knee Amputees
,”
J. Biomech.
,
24
(
11
), pp.
981
997
.10.1016/0021-9290(91)90016-G
21.
van Keeken
,
H. G.
,
Vrieling
,
A. H.
,
Hof
,
A. L.
,
Postema
,
K.
, and
Otten
,
B.
,
2012
, “
Stabilizing Moments of Force on a Prosthetic Knee During Stance in the First Steps After Gait Initiation
,”
Med. Eng. Phys.
,
34
(
6
), pp.
733
739
.10.1016/j.medengphy.2011.09.017
22.
Koehler-McNicholas
,
S. R.
,
Lipschutz
,
R. D.
, and
Gard
,
S. A.
,
2016
, “
The Biomechanical Response of Persons With Transfemoral Amputation to Variations in Prosthetic Knee Alignment During Level Walking
,”
J. Rehabil. Res. Dev.
,
53
(
6
), pp.
1089
1106
.10.1682/JRRD.2014.12.0311
23.
McCaw
,
S. T.
, and
DeVita
,
P.
,
1995
, “
Errors in Alignment of Center of Pressure and Foot Coordinates Affect Predicted Lower Extremity Torques
,”
J. Biomech.
,
28
(
8
), pp.
985
988
.10.1016/0021-9290(94)00151-S
24.
Camargo-Junior
,
F.
,
Ackermann
,
M.
,
Loss
,
J. F.
, and
Sacco
,
I. C.
,
2013
, “
Influence of Center of Pressure Estimation Errors on 3D Inverse Dynamics Solutions During Gait at Different Velocities
,”
J. Appl. Biomech.
,
29
(
6
), pp.
790
797
.10.1123/jab.29.6.790
25.
Haim
,
A.
,
Rozen
,
N.
, and
Wolf
,
A.
,
2010
, “
The Influence of Sagittal Center of Pressure Offset on Gait Kinematics and Kinetics
,”
J. Biomech.
,
43
(
5
), pp.
969
977
.10.1016/j.jbiomech.2009.10.045
26.
Haim
,
A.
,
Rozen
,
N.
,
Dekel
,
S.
,
Halperin
,
N.
, and
Wolf
,
A.
,
2008
, “
Control of Knee Coronal Plane Moment Via Modulation of Center of Pressure: A Prospective Gait Analysis Study
,”
J. Biomech.
,
41
(
14
), pp.
3010
3016
.10.1016/j.jbiomech.2008.07.029
27.
Yamaguchi
,
T.
,
Yano
,
M.
,
Onodera
,
H.
, and
Hokkirigawa
,
K.
,
2013
, “
Kinematics of Center of Mass and Center of Pressure Predict Friction Requirement at Shoe–Floor Interface During Walking
,”
Gait Posture
,
38
(
2
), pp.
209
214
.10.1016/j.gaitpost.2012.11.007
28.
Radcliffe
,
C. W.
, and
Deg
,
M. E.
,
2003
, “
Biomechanics of Knee Stability Control With Four-Bar Prosthetic Knees
,”
ISPO Australia Annual Meeting
, Vol.
11
, Melbourne, Australia, Nov. 27–29, Paper No. 7.http://rehabtech.com.au/techguide/pdf/kneeControl.pdf
29.
Wright
,
R. L.
,
Peters
,
D. M.
,
Robinson
,
P. D.
,
Watt
,
T. N.
, and
Hollands
,
M. A.
,
2015
, “
Older Adults Who Have Previously Fallen Due to a Trip Walk Differently Than Those Who Have Fallen Due to a Slip
,”
Gait Posture
,
41
(
1
), pp.
164
169
.10.1016/j.gaitpost.2014.09.025
30.
Hedrick
,
E. A.
,
Parker
,
S. M.
,
Hsiao
,
H.
, and
Knarr
,
B. A.
,
2021
, “
Mechanisms Used to Increase Propulsive Forces on a Treadmill in Older Adults
,”
J. Biomech.
,
115
, p.
110139
.10.1016/j.jbiomech.2020.110139
31.
Hsiao
,
H.
,
Knarr
,
B. A.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2015
, “
The Relative Contribution of Ankle Moment and Trailing Limb Angle to Propulsive Force During Gait
,”
Human Mov. Sci.
,
39
, pp.
212
221
.10.1016/j.humov.2014.11.008
32.
Herrero
,
L.
,
Franz
,
J. R.
, and
Lewek
,
M. D.
,
2021
, “
Gradually Learning to Increase Gait Propulsion in Young Unimpaired Adults
,”
Human Mov. Sci.
,
75
, p.
102745
.10.1016/j.humov.2020.102745
33.
Hsiao
,
H.
,
Knarr
,
B. A.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2015
, “
Mechanisms to Increase Propulsive Force for Individuals Poststroke
,”
J. Neuroeng. Rehabil.
,
12
(
1
), pp.
1
8
.10.1186/s12984-015-0030-8
34.
Farrens
,
A. J.
,
Lilley
,
M.
, and
Sergi
,
F.
,
2020
, “
Training Propulsion Via Acceleration of the Trailing Limb
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
12
), pp.
2816
2825
.10.1109/TNSRE.2020.3032094
35.
Hermans
,
A.
,
2019
, “
Exploring the Potential of Using the Foot Sole Pressure Pattern to Control Step Length in Exoskeleton Gait
,”
Master's thesis
,
Delft University of Technology
, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A7304becf-a080-496e-ac95-5ca6a84ebe8d
36.
Martin
,
P. E.
, and
Marsh
,
A. P.
,
1992
, “
Step Length and Frequency Effects on Ground Reaction Forces During Walking
,”
J. Biomech.
,
25
(
10
), pp.
1237
1239
.10.1016/0021-9290(92)90081-B
37.
Patla
,
A. E.
,
Robinson
,
C.
,
Samways
,
M.
, and
Armstrong
,
C. J.
,
1989
, “
Visual Control of Step Length During Overground Locomotion: Task-Specific Modulation of the Locomotor Synergy
,”
J. Exp. Psychol.
,
15
(
3
), pp.
603
617
.10.1037/0096-1523.15.3.603
38.
Yamaguchi
,
T.
,
Hatanaka
,
S.
, and
Hokkirigawa
,
K.
,
2008
, “
Effect of Step Length and Walking Speed on Traction Coefficient and Slip Between Shoe Sole and Walkway
,”
Tribol. Online
,
3
(
2
), pp.
59
64
.10.2474/trol.3.59
39.
Dingwell
,
J. B.
, and
Davis
,
B. L.
,
1996
, “
A Rehabilitation Treadmill With Software for Providing Real-Time Gait Analysis and Visual Feedback
,”
ASME J. Biomech. Eng.
,
118
(
2
), pp.
253
255
.10.1115/1.2795968
40.
Dingwell
,
J. B.
,
Davis
,
B. L.
, and
Frazder
,
D. M.
,
1996
, “
Use of an Instrumented Treadmill for Real-Time Gait Symmetry Evaluation and Feedback in Normal and Trans-Tibial Amputee Subjects
,”
Prosthet. Orthotics Int.
,
20
(
2
), pp.
101
110
.10.3109/03093649609164426
41.
Klingner
,
J.
,
Tversky
,
B.
, and
Hanrahan
,
P.
,
2011
, “
Effects of Visual and Verbal Presentation on Cognitive Load in Vigilance, Memory, and Arithmetic Tasks
,”
Psychophysiology
,
48
(
3
), pp.
323
332
.10.1111/j.1469-8986.2010.01069.x
42.
Tiwari
,
A.
, and
Deepak
,
J.
,
2020
, “
Template-Based Insoles for the Center of Pressure Estimation in Different Foot Sizes
,”
IEEE Sens. Lett.
,
4
(
8
), pp.
1
4
.10.1109/LSENS.2020.3010373
43.
Khajuria
,
A.
, and
Deepak
,
J.
,
2021
, “
Effects of Vibrotactile Feedback on Postural Sway in Trans-Femoral Amputees: A Wavelet Analysis
,”
J. Biomech.
,
115
, p.
110145
.10.1016/j.jbiomech.2020.110145
44.
Crea
,
S.
,
Cipriani
,
C.
,
Donati
,
M.
,
Carrozza
,
M. C.
, and
Vitiello
,
N.
,
2015
, “
Providing Time-Discrete Gait Information by Wearable Feedback Apparatus for Lower-Limb Amputees: Usability and Functional Validation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
250
257
.10.1109/TNSRE.2014.2365548
45.
Altman
,
A. R.
, and
Davis
,
I. S.
,
2012
, “
A Kinematic Method for Footstrike Pattern Detection in Barefoot and Shod Runners
,”
Gait Posture
,
35
(
2
), pp.
298
300
.10.1016/j.gaitpost.2011.09.104
46.
Christina
,
K. A.
,
Scott
,
C. W.
, and
Gilchrist
,
L. A.
,
2001
, “
Effect of Localized Muscle Fatigue on Vertical Ground Reaction Forces and Ankle Joint Motion During Running
,”
Human Mov. Sci.
,
20
(
3
), pp.
257
276
.10.1016/S0167-9457(01)00048-3
47.
Mariani
,
B.
,
Rochat
,
S.
,
Büla
,
C. J.
, and
Aminian
,
K.
,
2012
, “
Heel and Toe Clearance Estimation for Gait Analysis Using Wireless Inertial Sensors
,”
IEEE Trans. Biomed. Eng.
,
59
(
11
), pp.
3162
3168
.10.1109/TBME.2012.2216263
48.
Turns
,
L. J.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2007
, “
Relationships Between Muscle Activity and Anteroposterior Ground Reaction Forces in Hemiparetic Walking
,”
Arch. Phys. Med. Rehabil.
,
88
(
9
), pp.
1127
1135
.10.1016/j.apmr.2007.05.027
49.
Balasubramanian
,
C. K.
,
Bowden
,
M. G.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2007
, “
Relationship Between Step Length Asymmetry and Walking Performance in Subjects With Chronic Hemiparesis
,”
Arch. Phys. Med. Rehabil.
,
88
(
1
), pp.
43
49
.10.1016/j.apmr.2006.10.004
50.
Kulmala
,
J. P.
,
Avela
,
J. A. N. N. E.
,
Pasanen
,
K. A. T. I.
, and
Parkkari
,
J. A. R. I.
,
2013
, “
Forefoot Strikers Exhibit Lower Running-Induced Knee Loading Than Rearfoot Strikers
,”
Med Sci. Sports Exerc.
,
45
(
12
), pp.
2306
2313
.10.1249/MSS.0b013e31829efcf7
51.
Curtze
,
C.
,
Hof
,
A. L.
,
van Keeken
,
H. G.
,
Halbertsma
,
J. P.
,
Postema
,
K.
, and
Otten
,
B.
,
2009
, “
Comparative Roll-Over Analysis of Prosthetic Feet
,”
J. Biomech.
,
42
(
11
), pp.
1746
1753
.10.1016/j.jbiomech.2009.04.009
52.
De Asha
,
A. R.
, and
Buckley
,
J. G.
,
2015
, “
The Effects of Walking Speed on Minimum Toe Clearance and on the Temporal Relationship Between Minimum Clearance and Peak Swing-Foot Velocity in Unilateral Trans-Tibial Amputees
,”
Prosthet. Orthotics Int.
,
39
(
2
), pp.
120
125
.10.1177/0309364613515493
53.
Flowers
,
W. C.
,
Cullen
,
C. P.
, and
Tyra
,
K. P.
,
1986
, “
A Preliminary Report on the Use of a Practical Biofeedback Device for Gait Training of Above-Knee Amputees
,”
J. Rehabil. Res. Dev.
,
23
(
4
), pp.
7
18
.https://pubmed.ncbi.nlm.nih.gov/3820121/
54.
Varrecchia
,
T.
,
Serrao
,
M.
,
Rinaldi
,
M.
,
Ranavolo
,
A.
,
Conforto
,
S.
,
De Marchis
,
C.
,
Simonetti
,
A.
,
Poni
,
I.
,
Castellano
,
S.
,
Silvetti
,
A.
,
Tatarelli
,
A.
,
Fiori
,
L.
,
Conte
,
C.
, and
Draicchio
,
F.
,
2019
, “
Common and Specific Gait Patterns in People With Varying Anatomical Levels of Lower Limb Amputation and Different Prosthetic Components
,”
Human Mov. Sci.
,
66
, pp.
9
21
.10.1016/j.humov.2019.03.008
55.
Prinsen
,
E. C.
,
Nederhand
,
M. J.
,
Sveinsdóttir
,
H. S.
,
Prins
,
M. R.
,
Van der Meer
,
F.
,
Koopman
,
H. F.
, and
Rietman
,
J. S.
,
2017
, “
The Influence of a User-Adaptive Prosthetic Knee Across Varying Walking Speeds: A Randomized Cross-Over Trial
,”
Gait Posture
,
51
, pp.
254
260
.10.1016/j.gaitpost.2016.11.015
56.
Vimal
,
A. K.
,
Verma
,
V.
,
Khanna
,
N.
, and
Joshi
,
D.
,
2020
, “
Investigating the Effect of Vibrotactile Feedback in Transfemoral Amputee With and Without Movable Ankle Joint
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
12
), pp.
2890
2900
.10.1109/TNSRE.2020.3035833
You do not currently have access to this content.