Abstract

The ability of ankle rehabilitation robots to accurately mimicking the actual human ankle motion is an important judgment basis for robot-assisted rehabilitation training. This paper proposes an evaluation index and mechanism parameter optimization method based on ankle-foot motion trajectory by exploring the human ankle-foot motion principle. First, the ankle UR equivalent model and a 3-degree-of-freedom (DOF) parallel ankle rehabilitation robot are described. Second, the ankle-foot motion data are measured by the body surface marker method, which proved the coupling of ankle-foot motion. Then, a new evaluation index, the ankle-foot motion comfort zone, is proposed, which is essentially the superimposed ankle-foot motion trajectory measured about 3-5 mm wide. Third, a mechanism parameter optimization method, is proposed in terms of the ankle-foot motion comfort zone as the evaluation index, which is applied to the 3-DOF parallel ankle rehabilitation robot, and the optimization results proved the feasibility of the method. Finally, the optimized rehabilitation robot is fitted with different ankle motions, and a prototype model is designed for kinematics simulation, which verifies the adaptability of the optimization method. This study provides a theoretical basis for the configuration design of ankle rehabilitation robots and provides a new direction for the optimization of the mechanism parameters.

References

1.
Herzog
,
M. M.
,
Kerr
,
Z. Y.
,
Marshall
,
S. W.
, and
Wikstrom
,
E. A.
,
2019
, “
Epidemiology of Ankle Sprains and Chronic Ankle Instability
,”
J. Athletic Train.
,
54
(
6
), pp.
603
610
.10.4085/1062-6050-447-17
2.
Waterman
,
B. R.
,
Owens
,
B. D.
,
Davey
,
S.
,
Zacchilli
,
M. A.
, and
Belmont
,
P. J.
,
2010
, “
The Epidemiology of Ankle Sprains in the United States
,”
J. Bone. Jt. Surg. Am.
92
(
13
), pp.
2279
2284
.10.2106/JBJS.I.01537
3.
Roos
,
K. G.
,
Kerr
,
Z. Y.
,
Mauntel
,
T. C.
,
Djoko
,
A.
,
Dompier
,
T. P.
, and
Wikstrom
,
E. A.
,
2017
, “
The Epidemiology of Lateral Ligament Complex Ankle Sprains in National Collegiate Athletic Association Sports
,”
Am. J. Sport. Med.
,
45
(
1
), pp.
201
209
.10.1177/0363546516660980
4.
De Noronha
,
M.
,
Lay
,
E. K.
,
McPhee
,
M. R.
,
Mnatzaganian
,
G.
, and
Nunes
,
G. S.
,
2019
, “
Ankle Sprain Has Higher Occurrence During the Latter Parts of Matches: Systematic Review With Meta-Analysis
,”
J. Sport. Rehabil.
,
28
(
4
), pp.
373
380
.10.1123/jsr.2017-0279
5.
Yin
,
Y.
,
Luo
,
D. M.
,
Liu
,
H.
, and
Yu
,
B.
,
2019
, “
Research Advancement of Epidemiology on Ankle Sprain
,”
Sport Sci. Technol.
,
40
(
6
), pp.
18
21 + 24
.
6.
Von Teh
,
C. Y.
,
Bin Shahrol Aman
,
M. N. S.
,
Mustafa
,
W. A.
, and
Bin Ahmad
,
S. A.
,
2020
, “
Conceptual Design for Ankle Rehabilitation Robot by Using Morphological Chart and Pugh Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
932
(
1
), p.
012062
.10.1088/1757-899X/932/1/012062
7.
Girone
,
M.
,
Burdea
,
G.
,
Bouzit
,
M.
,
Popescu
,
V.
, and
Deutsch
,
J. E.
,
2001
, “
A Stewart Platform-Based System for Ankle Tele-Rehabilitation
,”
Auton. Robots
,
10
(
2
), pp.
203
212
.10.1023/A:1008938121020
8.
Boian
,
R. F.
,
Bouzit
,
M.
,
Burdea
,
G. C.
,
Lewis
,
J.
, and
Deutsch
,
J. E.
,
2005
, “
Dual Stewart Platform Mobility Simulator
,”
9th International Conference on Rehabilitation Robotics, ICORR
,
Chicago, IL
, June 28–July 1, pp.
550
555
.10.1109/ICORR.2005.1502023
9.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
Inverse-Kinematics-Based Control of a Redundantly Actuated Platform for Rehabilitation
,”
Proc. Inst. Mech. Eng., Part I
,
223
(
1
), pp.
53
70
.10.1243/09596518JSCE622
10.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Robot. Res.
,
28
(
9
), pp.
1216
1227
.10.1177/0278364909104221
11.
Malosio
,
M.
,
Negri
,
S. P.
,
Pedrocchi
,
N.
,
Vicentini
,
F.
,
Caimmi
,
M.
, and
Molinari Tosatti
,
L.
,
2012
, “
A Spherical Parallel Three Degrees-of-Freedom Robot for Ankle-Foot Neuro-Rehabilitation
,”
34th Annual International Conference of the IEEE EMBS
,
San Diego, CA
, Aug. 28–Sept. 1, pp.
3356
3359
.10.1109/EMBC.2012.6346684
12.
Liu
,
X. Y.
,
Zhang
,
J. J.
,
Liu
,
C. L.
,
Niu
,
J. Y.
,
Qi
,
K. C.
, and
Guo
,
S. J.
,
2021
, “
Kinematic Parameter Optimization of Workspace-Based Generalized Spherical Parallel Robots for Ankle Joint Rehabilitation
,”
China Mech. Eng.
,
32
(
16
), pp.
1921
1929
.
13.
Liu
,
X. S.
,
Zhang
,
J. J.
,
Liu
,
C. L.
,
Niu
,
J. Y.
,
Qi
,
K. C.
, and
Guo
,
S. J.
,
2021
, “
Kinematics Analysis and Scale Optimization of Four Degree of Freedom Generalized Spherical Parallel Mechanism for Ankle Joint Rehabilitation
,”
ASME J. Biomed. Eng.
,
38
(
2
), pp.
286
294
.10.7507/1001-5515.202006080
14.
Zhang
,
J. J.
,
Liu
,
C. L.
,
Liu
,
T.
,
Qi
,
K. C.
,
Niu
,
J. Y.
, and
Guo
,
S. J.
,
2021
, “
Module Combination Based Configuration Synthesis and Kinematic Analysis of Generalized Spherical Parallel Mechanism for Ankle Rehabilitation
,”
Mech. Mach. Theory
,
166
, p.
104436
.10.1016/j.mechmachtheory.2021.104436
15.
Kovaleski
,
J. E.
,
Heitman
,
R. J.
,
Gurchiek
,
L. R.
,
Hollis
,
J. M.
,
Liu
,
W.
, and
Albert
,
W. P.
,
2014
, “
Joint Stability Characteristics of the Ankle Complex After Lateral Ligamentous Injury, Part I: A Laboratory Comparison Using Arthrometric Measurement
,”
J. Athletic Train.
,
49
(
2
), pp.
192
197
.10.4085/1062-6050-49.2.07
16.
Li
,
L.
,
Gollhofer
,
A.
,
Lohrer
,
H.
,
Dorn-Lange
,
N.
,
Bonsignore
,
G.
, and
Gehring
,
D.
,
2019
, “
Function of Ankle Ligaments for Subtalar and Talocrural Joint Stability During an Inversion Movement - An In Vitro Study
,”
J. Foot Ankle Res.
,
12
, p.
16
.10.1186/s13047-019-0330-5
17.
Bonnel
,
F.
,
Toullec
,
E.
,
Mabit
,
C.
, and
Tourné
,
Y.
,
2010
, “
Chronic Ankle Instability: Biomechanics and Pathomechanics of Ligaments Injury and Associated Lesions
,”
Orthop. Traumatol.-Surg.
,
96
(
4
), pp.
426
432
.10.1016/j.otsr.2010.04.003
18.
Shin
,
J.
,
Yue
,
N.
, and
Untaroiu
,
C. D.
,
2012
, “
A Finite Element Model of the Foot and Ankle for Automotive Impact Applications
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2519
2531
.10.1007/s10439-012-0607-3
19.
Lin
,
C.-Y.
,
Shau
,
Y.-W.
,
Wang
,
C.-L.
, and
Kang
,
J.-H.
,
2015
, “
Modeling and Analysis of the Viscoelastic Response of the Ankle Ligament Complex in Inversion Ankle Sprain
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2047
2055
.10.1007/s10439-014-1240-0
20.
Fong
,
D. T.-P.
,
Chung
,
M. M.-L.
,
Chan
,
Y. Y.
, and
Chan
,
K. M.
,
2012
, “
A Mechanical Jig for Measuring Ankle Supination and Pronation Torque In Vitro and In Vivo
,”
Med. Eng. Phys.
,
34
(
6
), pp.
791
794
.10.1016/j.medengphy.2012.03.004
21.
Svoboda
,
M. S. J.
,
McHale
,
C. K.
,
Belkoff
,
S. M.
,
Cohen
,
K. S.
, and
Klemme
,
L. W. R.
,
2002
, “
The Effects of Tibial Malrotation on the Biomechanics of the Tibiotalar Joint
,”
Foot Ankle Int.
,
23
(
2
), pp.
102
106
.10.1177/107110070202300204
22.
Dong
,
M. J.
,
Kong
,
Y.
,
Li
,
J. F.
, and
Fan
,
W. P.
,
2020
, “
Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot
,”
J. Healthcare Eng.
,
2020
, p.
3053629
.10.1155/2020/3053629
23.
Yao
,
L. G.
,
Liao
,
Z. W.
,
Lu
,
Z. X.
, and
Zhang
,
J.
,
2018
, “
Nutation Motion Based Trajectory Planning for a Novel Hybrid Ankle Rehabilitation Device
,”
ASME J. Mech. Eng.
,
54
(
21
), pp.
33
40
.10.3901/JME.2018.21.033
24.
Liao
,
Z. W.
,
Yao
,
L. G.
,
Lu
,
Z. X.
, and
Zhang
,
J.
,
2018
, “
Screw Theory Based Mathematical Modeling and Kinematic Analysis of a Novel Ankle Rehabilitation Robot With a Constrained 3-PSP Mechanism Topology
,”
Int. J. Intell. Robot Appl.
,
2
(
3
), pp.
351
360
.10.1007/s41315-018-0063-9
25.
Li
,
J. F.
,
Xu
,
C. H.
,
Tao
,
C. J.
,
Ji
,
R.
,
Li
,
S. C.
, and
Zhang
,
Z. J.
,
2016
, “
A Parallel Ankle Rehabilitation Mechanism and Its Performance Analysis Based on 3-UPS/RRR
,”
Acta Autom. Sin.
,
42
(
12
), pp.
1794
1807
.
26.
Wang
,
J. S.
,
Wu
,
C.
, and
Liu
,
X. J.
,
2010
, “
Performance Evaluation of Parallel Manipulators: Motion/Force Transmissibility and Its Index
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1462
1476
.10.1016/j.mechmachtheory.2010.05.001
27.
Huang
,
Z.
,
Kong
,
L. F.
, and
Fang
,
Y. F.
,
1997
,
Mechanism Theory and Control of Parallel Robots
, China Machine Press, Beijing.
28.
Wang
,
C. Z.
,
Fang
,
Y. F.
,
Guo
,
S.
, and
Zhou
,
C. C.
,
2015
, “
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Robotics
,
33
(
2
), pp.
366
384
.10.1017/S0263574714000241
29.
Dul
,
J.
, and
Johnson
,
G. E.
,
1985
, “
A Kinematic Model of the Human Ankle
,”
J. Biomed. Eng.
,
7
(
2
), pp.
137
143
.10.1016/0141-5425(85)90043-3
30.
Liu
,
C. L.
,
Zhang
,
J. J.
,
Qi
,
K. C.
,
Niu
,
J. Y.
,
Li
,
W. M.
, and
Guo
,
S. J.
,
2020
, “
Synthesis of Generalized Spherical Parallel Manipulations for Ankle
,”
J. Mech. Eng.
,
56
(
19
), pp.
79
91
.
31.
Liao
,
Z. P.
,
Chen
,
L.
,
Bai
,
H. P.
, and
Ding
,
M. Q.
,
2019
, “
Adaptive Alpha-Shapes Plane Point Cloud Boundary Extraction Method
,”
J. Changsha Univ. Sci. Technol. (Nat. Sci.)
,
16
(
2
), pp.
15
21
.
32.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints—Part I: Kinematics
,”
ASME J. Biomed. Eng.
,
110
(
4
), pp.
364
373
.10.1115/1.3108455
You do not currently have access to this content.