Abstract

Rheumatic heart disease (RHD) is a neglected tropical disease despite the substantial global health burden. In this study, we aimed to develop a lower cost method of modeling aortic blood flow using subject-specific velocity profiles, aiding our understanding of RHD's consequences on the structure and function of the ascending aorta. Echocardiography and cardiovascular magnetic resonance (CMR) are often used for diagnosis, including valve dysfunction assessments. However, there is a need to further characterize aortic valve lesions to improve treatment options and timing for patients, while using accessible and affordable imaging strategies. Here, we simulated effects of RHD aortic valve lesions on the aorta using computational fluid dynamics (CFD). We hypothesized that inlet velocity distribution and wall shear stress (WSS) will differ between RHD and non-RHD individuals, as well as between subject-specific and standard Womersley velocity profiles. Phase-contrast CMR data from South Africa of six RHD subjects with aortic stenosis and/or regurgitation and six matched controls were used to estimate subject-specific velocity inlet profiles and the mean velocity for Womersley profiles. Our findings were twofold. First, we found WSS in subject-specific RHD was significantly higher (p < 0.05) than control subject simulations, while Womersley simulation groups did not differ. Second, evaluating spatial velocity differences (ΔSV) between simulation types revealed that simulations of RHD had significantly higher ΔSV than non-RHD (p < 0.05), these results highlight the need for implementing subject-specific input into RHD CFD, which we demonstrate how to accomplish through accessible methods.

References

1.
Dick
,
G. F.
,
1924
, “
The Etiology of Scarlet Fever
,”
JAMA: J. Am. Med. Assoc.
,
82
(
4
), p.
301
.10.1001/jama.1924.02650300047013
2.
Zühlke
,
L. J.
,
Beaton
,
A.
,
Engel
,
M. E.
,
Hugo-Hamman
,
C. T.
,
Karthikeyan
,
G.
,
Katzenellenbogen
,
J. M.
,
Ntusi
,
N.
, et al.,
2017
, “
Group a Streptococcus, Acute Rheumatic Fever and Rheumatic Heart Disease: Epidemiology and Clinical Considerations
,”
Curr. Treat. Options Cardiovasc. Med.
,
19
(
2
), p.
15
.10.1007/s11936-017-0513-y
3.
Marijon
,
E.
,
Celermajer
,
D. S.
, and
Jouven
,
X.
,
2017
, “
Rheumatic Heart Disease—An Iceberg in Tropical Waters
,”
N. Engl. J. Med.
,
377
(
8
), pp.
780
781
.10.1056/NEJMe1705840
4.
Caldas
,
L. M.
,
Terreri
,
M. T. R. A.
,
Moises
,
V. A.
,
Silva
,
C. M. C.
,
Len
,
C. A.
,
Carvalho
,
A. C.
, and
Hilário
,
M. O. E.
,
2008
, “
What Is the True Frequency of Carditis in Acute Rheumatic Fever? A Prospective Clinical and Doppler Blind Study of 56 Children With Up to 60 Months of Follow-Up Evaluation
,”
Pediatr. Cardiol.
,
29
(
6
), pp.
1048
1053
.10.1007/s00246-008-9242-z
5.
Scherman
,
J.
,
Manganyi
,
R.
,
Human
,
P.
,
Pennel
,
T.
,
Brooks
,
A.
,
Brink
,
J.
, and
Zilla
,
P.
,
2019
, “
Isolated Mechanical Aortic Valve Replacement in Rheumatic Patients in a Low- to Middle-Income Country
,”
J. Thorac. Cardiovasc. Surg.
,
157
(
3
), pp.
886
893
.10.1016/j.jtcvs.2018.06.083
6.
Lumngwena
,
E. N.
,
Skatulla
,
S.
,
Blackburn
,
J. M.
, and
Ntusi
,
N. A. B.
,
2022
, “
Mechanistic Implications of Altered Protein Expression in Rheumatic Heart Disease
,”
Heart Failure Rev.
,
27
(
1
), pp.
357
368
.10.1007/s10741-020-09993-1
7.
Aremu
,
O. O.
,
Samuels
,
P.
,
Jermy
,
S.
,
Lumngwena
,
E. N.
,
Mutithu
,
D.
,
Cupido
,
B. J.
,
Skatulla
,
S.
, and
Ntusi
,
N. A.
,
2021
, “
Cardiovascular Imaging Modalities in the Diagnosis and Management of Rheumatic Heart Disease
,”
Int. J. Cardiol.
,
325
(
2
), pp.
176
185
.10.1016/j.ijcard.2020.09.049
8.
Arzani
,
A.
, and
Mofrad
,
M. R.
,
2017
, “
A Strain-Based Finite Element Model for Calcification Progression in Aortic Valves
,”
J. Biomech.
,
65
(
12
), pp.
216
220
.10.1016/j.jbiomech.2017.10.014
9.
Kingué
,
S.
,
Ba
,
S. A.
,
Balde
,
D.
,
Diarra
,
M. B.
,
Anzouan-Kacou
,
J.-B.
,
Anisubia
,
B.
,
Damorou
,
J.-M.
, et al.,
2016
, “
The VALVAFRIC Study: A Registry of Rheumatic Heart Disease in Western and Central Africa
,”
Arch. Cardiovasc. Dis.
,
109
(
5
), pp.
321
329
.10.1016/j.acvd.2015.12.004
10.
Zühlke
,
L.
,
Engel
,
M. E.
,
Karthikeyan
,
G.
,
Rangarajan
,
S.
,
Mackie
,
P.
,
Cupido
,
B.
,
Mauff
,
K.
, et al.,
2015
, “
Characteristics, Complications, and Gaps in Evidence-Based Interventions in Rheumatic Heart Disease: The Global Rheumatic Heart Disease Registry (the REMEDY Study)
,”
Eur. Heart J.
,
36
(
18
), pp.
1115
1122
.10.1093/eurheartj/ehu449
11.
Sharma
,
G.
,
Ghati
,
N.
,
Doshi
,
S.
,
Sharma
,
S.
,
Sharique
,
M.
,
Agarwal
,
A.
,
Devagourou
,
V.
,
Hote
,
M. P.
, and
Choudhary
,
S. K.
,
2022
, “
Incidence and Predictors of de Novo Late-Onset Persistent Atrial Fibrillation in Postoperative Rheumatic Heart Disease Patients (LOAF-RHD Study)
,”
J. Interventional Card. Electrophysiol.
,
64
(
3
), pp.
621
628
.10.1007/s10840-021-01085-w
12.
Rwebembera
,
J.
,
Beaton
,
A. Z.
,
de Loizaga
,
S. R.
,
Rocha
,
R. T. L.
,
Doreen
,
N.
,
Ssinabulya
,
I.
,
Okello
,
E.
, et al.,
2021
, “
The Global Impact of Rheumatic Heart Disease
,”
Curr. Cardiol. Rep.
,
23
(
11
), p.
160
.10.1007/s11886-021-01592-2
13.
French
,
K. A.
, and
Poppas
,
A.
,
2018
, “
Rheumatic Heart Disease in Pregnancy
,”
Circulation
,
137
(
8
), pp.
817
819
.10.1161/CIRCULATIONAHA.118.033465
14.
Cupido
,
B.
,
Zühlke
,
L.
,
Osman
,
A.
,
van Dyk
,
D.
, and
Sliwa
,
K.
,
2021
, “
Managing Rheumatic Heart Disease in Pregnancy: A Practical Evidence-Based Multidisciplinary Approach
,”
Can. J. Cardiol.
,
37
(
12
), pp.
2045
2055
.10.1016/j.cjca.2021.09.015
15.
Nahar
,
K.
, and
Nahar
,
N.
,
2021
, “
Prosthetic Mitral Valve Thrombosis in a Known Case of Rheumatic Heart Disease at 37 Weeks Pregnancy: A Case Report
,”
Int. J. Reprod., Contracept., Obstet. Gynecol.
,
10
(
8
), p.
3254
.10.18203/2320-1770.ijrcog20212994
16.
Engel
,
M. E.
,
Haileamlak
,
A.
,
Zühlke
,
L.
,
Lemmer
,
C. E.
,
Nkepu
,
S.
,
van de Wall
,
M.
,
Daniel
,
W.
,
Shung King
,
M.
, and
Mayosi
,
B. M.
,
2015
, “
Prevalence of Rheumatic Heart Disease in 4720 Asymptomatic Scholars From South Africa and Ethiopia
,”
Heart
,
101
(
17
), pp.
1389
1394
.10.1136/heartjnl-2015-307444
17.
Chambers
,
J. B.
,
Garbi
,
M.
,
Nieman
,
K.
,
Myerson
,
S.
,
Pierard
,
L. A.
,
Habib
,
G.
,
Zamorano
,
J. L.
, et al.,
2017
, “
Appropriateness Criteria for the Use of Cardiovascular Imaging in Heart Valve Disease in Adults: A European Association of Cardiovascular Imaging Report of Literature Review and Current Practice
,”
Eur. Heart J.—Cardiovasc. Imaging
,
18
(
5
), pp.
489
498
.10.1093/ehjci/jew309
18.
Farooq
,
O.
,
Jan
,
A.
,
Ghani
,
U.
,
Qazi
,
U.
,
Hassan Khan
,
W.
,
Alam
,
S.
,
Khan
,
M. J.
,
Khan
,
O. A.
,
Awan
,
N. I.
, and
Shah
,
H.
,
2021
, “
Pulmonary Hypertension as a Predictor of Early Outcomes of Mitral Valve Replacement: A Study in Rheumatic Heart Disease Patients
,”
Cureus
,
13
(
12
), p.
e20070
.10.7759/cureus.20070
19.
Nishimura
,
R. A.
,
Otto
,
C. M.
,
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Erwin
,
J. P.
,
Guyton
,
R. A.
,
O'Gara
,
P. T.
, et al.,
2014
, “
2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease
,”
Circulation
,
129
(
23
), p.
6
.10.1161/CIR.0000000000000031
20.
Hammermeister
,
K.
,
Sethi
,
G. K.
,
Henderson
,
W. G.
,
Grover
,
F. L.
,
Oprian
,
C.
, and
Rahimtoola
,
S. H.
,
2000
, “
Outcomes 15 Years After Valve Replacement With a Mechanical Versus a Bioprosthetic Valve: Final Report of the Veterans Affairs Randomized Trial
,”
J. Am. Coll. Cardiol.
,
36
(
4
), pp.
1152
1158
.10.1016/S0735-1097(00)00834-2
21.
Bansal
,
R.
,
Senguttuvan
,
N. B.
,
Karthikeyan
,
G.
, and
Ntsekhe
,
M.
,
2021
, “
Catheter-Based Evaluation and Treatment of Rheumatic Heart Disease
,”
Acute Rheumatic Fever and Rheumatic Heart Disease
,
Elsevier
, Amsterdam, The Netherlands, pp.
133
146
.10.1016/B978-0-323-63982-8.00007-6
22.
Saxena
,
A.
,
2013
, “
Echocardiographic Diagnosis of Chronic Rheumatic Valvular Lesions
,”
Global Heart
,
8
(
3
), p.
203
.10.1016/j.gheart.2013.08.007
23.
Swanson
,
L.
,
Owen
,
B.
,
Keshmiri
,
A.
,
Deyranlou
,
A.
,
Aldersley
,
T.
,
Lawrenson
,
J.
,
Human
,
P.
, et al.,
2020
, “
A Patient-Specific CFD Pipeline Using Doppler Echocardiography for Application in Coarctation of the Aorta in a Limited Resource Clinical Context
,”
Front. Bioeng. Biotechnol.
,
8
, p.
6
.10.3389/fbioe.2020.00409
24.
Takeda
,
R.
,
Sato
,
F.
,
Yokoyama
,
H.
,
Sasaki
,
K.
,
Oshima
,
N.
,
Kuroda
,
A.
,
Takashima
,
H.
,
Li
,
C.
,
Honda
,
S.
, and
Kamiya
,
H.
,
2022
, “
Investigations Into the Potential of Using Open Source CFD to Analyze the Differences in Hemodynamic Parameters for Aortic Dissections (Healthy Versus Stanford Type A and B)
,”
Ann. Vasc. Surg.
,
79
, pp.
310
323
.10.1016/j.avsg.2021.08.007
25.
Polanczyk
,
A.
,
Piechota-Polanczyk
,
A.
,
Neumayer
,
C.
, and
Huk
,
I.
,
2019
, “
CFD Reconstruction of Blood Hemodynamic Based on a Self-Made Algorithm in Patients With Acute Type IIIb Aortic Dissection Treated With TEVAR Procedure
,”
Nuclear Power Plants: Innovative Technologies for Instrumentation and Control Systems
, Springer Nature, New York, pp.
75
84
.10.1007/978-3-030-13720-5_7
26.
Trachet
,
B.
,
Bols
,
J.
,
Degroote
,
J.
,
Verhegghe
,
B.
,
Stergiopulos
,
N.
,
Vierendeels
,
J.
, and
Segers
,
P.
,
2015
, “
An Animal-Specific FSI Model of the Abdominal Aorta in Anesthetized Mice
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1298
1309
.10.1007/s10439-015-1310-y
27.
Peng
,
C.
,
Liu
,
J.
,
He
,
W.
,
Qin
,
W.
,
Yuan
,
T.
,
Kan
,
Y.
,
Wang
,
K.
,
Wang
,
S.
, and
Shi
,
Y.
,
2022
, “
Numerical Simulation in the Abdominal Aorta and the Visceral Arteries With or Without Stenosis Based on 2D PCMRI
,”
Int. J. Numer. Methods Biomed. Eng.
,
38
(
3
), p.
e3569
.10.1002/cnm.3569
28.
Krishnan
,
K.
,
Ge
,
L.
,
Haraldsson
,
H.
,
Hope
,
M. D.
,
Saloner
,
D. A.
,
Guccione
,
J. M.
, and
Tseng
,
E. E.
,
2015
, “
Ascending Thoracic Aortic Aneurysm Wall Stress Analysis Using Patient-Specific Finite Element Modeling of In Vivo Magnetic Resonance Imaging
,”
Interact. Cardiovasc. Thorac. Surg.
,
21
(
4
), pp.
471
480
.10.1093/icvts/ivv186
29.
Abad
,
C.
,
2017
, “
Ascending Thoracic Aortic Aneurysm: Usefulness of the Speckle-Tracking Transesophageal Echocardiogram
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
4
), pp.
789
790
.10.1016/j.jtcvs.2016.11.050
30.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Gallo
,
D.
,
Bignardi
,
C.
, and
Rizzo
,
G.
,
2013
, “
Inflow Boundary Conditions for Image-Based Computational Hemodynamics: Impact of Idealized Versus Measured Velocity Profiles in the Human Aorta
,”
J. Biomech.
,
46
(
1
), pp.
102
109
.10.1016/j.jbiomech.2012.10.012
31.
Wilson
,
N. M.
,
Arko
,
F. R.
, and
Taylor
,
C. A.
,
2005
, “
Predicting Changes in Blood Flow in Patient-Specific Operative Plans for Treating Aortoiliac Occlusive Disease
,”
Comput. Aided Surg.
,
10
(
4
), pp.
257
277
.10.3109/10929080500230445
32.
Gomez
,
A.
,
Marcan
,
M.
,
Arthurs
,
C. J.
,
Wright
,
R.
,
Youssefi
,
P.
,
Jahangiri
,
M.
, and
Figueroa
,
C. A.
,
2019
, “
Optimal B-Spline Mapping of Flow Imaging Data for Imposing Patient-Specific Velocity Profiles in Computational Hemodynamics
,”
IEEE Trans. Biomed. Eng.
,
66
(
7
), pp.
1872
1883
.10.1109/TBME.2018.2880606
33.
Youssefi
,
P.
,
Gomez
,
A.
,
He
,
T.
,
Anderson
,
L.
,
Bunce
,
N.
,
Sharma
,
R.
,
Figueroa
,
C. A.
, and
Jahangiri
,
M.
,
2017
, “
Patient-Specific Computational Fluid Dynamics—Assessment of Aortic Hemodynamics in a Spectrum of Aortic Valve Pathologies
,”
J. Thorac. Cardiovasc. Surg.
,
153
(
1
), pp.
8
20.
10.1016/j.jtcvs.2016.09.040
34.
Pons
,
R.
,
Guala
,
A.
,
Rodríguez-Palomares
,
J. F.
,
Cajas
,
J. C.
,
Dux-Santoy
,
L.
,
Teixidó-Tura
,
G.
,
Molins
,
J. J.
,
Vázquez
,
M.
,
Evangelista
,
A.
, and
Martorell
,
J.
,
2020
, “
Fluid–Structure Interaction Simulations Outperform Computational Fluid Dynamics in the Description of Thoracic Aorta Haemodynamics and in the Differentiation of Progressive Dilation in Marfan Syndrome Patients
,”
R. Soc. Open Sci.
,
7
(
2
), p.
191752
.10.1098/rsos.191752
35.
Nayak
,
K. S.
,
Nielsen
,
J.-F.
,
Bernstein
,
M. A.
,
Markl
,
M.
,
Gatehouse
,
P. D.
,
Botnar
,
R. M.
,
Saloner
,
D.
, et al.,
2015
, “
Cardiovascular Magnetic Resonance Phase Contrast Imaging
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), p.
71
.10.1186/s12968-015-0172-7
36.
Heiberg
,
E.
,
Sjögren
,
J.
,
Ugander
,
M.
,
Carlsson
,
M.
,
Engblom
,
H.
, and
Arheden
,
H.
,
2010
, “
Design and Validation of Segment-Freely Available Software for Cardiovascular Image Analysis
,”
BMC Med. Imaging
,
10
, pp.
1
13
.10.1186/1471-2342-10-1
37.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
NeuroImage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
38.
Roule
,
V.
,
Placente
,
A.
,
Sabatier
,
R.
,
Bignon
,
M.
,
Saplacan
,
V.
,
Ivascau
,
C.
,
Milliez
,
P.
, and
Beygui
,
F.
,
2018
, “
Angles Between the Aortic Root and the Left Ventricle Assessed by MDCT Are Associated With the Risk of Aortic Regurgitation After Transcatheter Aortic Valve Replacement
,”
Heart Vessels
,
33
(
1
), pp.
58
65
.10.1007/s00380-017-1032-1
39.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
541
.10.1007/s10439-016-1762-8
40.
Hosseini
,
M.
,
Baikpour
,
M.
,
Yousefifard
,
M.
,
Fayaz
,
M.
,
Koohpayehzadeh
,
J.
,
Ghelichkhani
,
P.
,
Asady
,
H.
, et al.,
2015
, “
Blood Pressure Percentiles by Age and Body Mass Index for Adults
,”
EXCLI J.
,
14
, pp.
465
477
.10.17179/excli2014-635
41.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
, et al.,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
.10.1109/MCSE.2014.80
42.
Sotelo
,
J.
,
Urbina
,
J.
,
Valverde
,
I.
,
Tejos
,
C.
,
Irarrazaval
,
P.
,
Andia
,
M. E.
,
Uribe
,
S.
, and
Hurtado
,
D. E.
,
2016
, “
3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta
,”
IEEE Trans. Med. Imaging
,
35
(
6
), pp.
1475
1487
.10.1109/TMI.2016.2517406
43.
Lang
,
R. M.
,
Badano
,
L. P.
,
Mor-Avi
,
V.
,
Afilalo
,
J.
,
Armstrong
,
A.
,
Ernande
,
L.
,
Flachskampf
,
F. A.
, et al.,
2015
, “
Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update From the American Society of Echocardiography and the European Association of Cardiovascular Imaging
,”
J. Am. Soc. Echocardiography
,
28
(
1
), pp.
1
39.
10.1016/j.echo.2014.10.003
44.
Fujiwara
,
T.
,
Barker
,
A. J.
,
Sughimoto
,
K.
,
Liang
,
F.
, and
Liu
,
H.
,
2019
, “
Orientation Effects of Bicuspid Aortic Valve With Mild/Severe Aortic Stenosis on Aortic Hemodynamics: A Parametric Study
,”
J. Biomech. Sci. Eng.
,
14
(
3
), pp.
18
00417
.10.1299/jbse.18-00417
45.
Sugiyama
,
S.-I.
,
Niizuma
,
K.
,
Nakayama
,
T.
,
Shimizu
,
H.
,
Endo
,
H.
,
Inoue
,
T.
,
Fujimura
,
M.
,
Ohta
,
M.
,
Takahashi
,
A.
, and
Tominaga
,
T.
,
2013
, “
Relative Residence Time Prolongation in Intracranial Aneurysms
,”
Neurosurgery
,
73
(
5
), pp.
767
776
.10.1227/NEU.0000000000000096
46.
Vogl
,
B.
,
Gadhave
,
R.
,
Wang
,
Z.
,
El Shaer
,
A.
,
Chavez Ponce
,
A.
,
Alkhouli
,
M.
, and
Hatoum
,
H.
,
2023
, “
Effect of Aortic Curvature on Bioprosthetic Aortic Valve Performance
,”
J. Biomech.
,
146
, p.
111422
.10.1016/j.jbiomech.2022.111422
47.
Raghavan
,
M.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.10.1016/S0021-9290(99)00201-8
48.
Armour
,
C. H.
,
Guo
,
B.
,
Pirola
,
S.
,
Saitta
,
S.
,
Liu
,
Y.
,
Dong
,
Z.
, and
Xu
,
X. Y.
,
2021
, “
The Influence of Inlet Velocity Profile on Predicted Flow in Type B Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
481
490
.10.1007/s10237-020-01395-4
49.
Bruening
,
J.
,
Hellmeier
,
F.
,
Yevtushenko
,
P.
,
Kelm
,
M.
,
Nordmeyer
,
S.
,
Sündermann
,
S. H.
,
Kuehne
,
T.
, and
Goubergrits
,
L.
,
2018
, “
Impact of Patient-Specific LVOT Inflow Profiles on Aortic Valve Prosthesis and Ascending Aorta Hemodynamics
,”
J. Comput. Sci.
,
24
, pp.
91
100
.10.1016/j.jocs.2017.11.005
50.
Hautanen
,
S.
,
Kiljander
,
T.
,
Korpela
,
T.
,
Saari
,
P.
,
Kokkonen
,
J.
,
Mustonen
,
P.
,
Sillanmäki
,
S.
,
Ylä-Herttuala
,
E.
,
Husso
,
M.
,
Hedman
,
M.
, and
Kauhanen
,
P.
,
2023
, “
4D Flow Versus 2D Phase Contrast MRI in Populations With Bi- and Tricuspid Aortic Valves
,”
In Vivo
,
37
(
1
), pp.
88
98
.10.21873/invivo.13057
51.
Sievers
,
H.-H.
, and
Sievers
,
H. L.
,
2011
, “
Aortopathy in Bicuspid Aortic Valve Disease—Genes or Hemodynamics? or Scylla and Charybdis?
,”
Eur. J. Cardio-Thorac. Surg.
,
39
(
6
), pp.
803
804
.10.1016/j.ejcts.2011.02.007
52.
Barker
,
A. J.
,
Markl
,
M.
,
Bürk
,
J.
,
Lorenz
,
R.
,
Bock
,
J.
,
Bauer
,
S.
,
Schulz-Menger
,
J.
, and
von Knobelsdorff-Brenkenhoff
,
F.
,
2012
, “
Bicuspid Aortic Valve Is Associated With Altered Wall Shear Stress in the Ascending Aorta
,”
Circ.: Cardiovasc. Imaging
,
5
(
4
), pp.
457
466
.10.1161/CIRCIMAGING.112.973370
53.
Nightingale
,
M.
,
Scott
,
M. B.
,
Sigaeva
,
T.
,
Guzzardi
,
D.
,
Garcia
,
J.
,
Malaisrie
,
S. C.
,
McCarthy
,
P.
,
Markl
,
M.
,
Fedak
,
P. W.
,
Di Martino
,
E. S.
, and
Barker
,
A. J.
,
2023
, “
Magnetic Resonance Imaging-Based Hemodynamic Wall Shear Stress Alters Aortic Wall Tissue Biomechanics in Bicuspid Aortic Valve Patients
,”
J. Thorac. Cardiovasc. Surg.
, epub.10.1016/j.jtcvs.2022.12.021
54.
Galvin
,
J. E.
,
Hemric
,
M. E.
,
Kosanke
,
S. D.
,
Factor
,
S. M.
,
Quinn
,
A.
, and
Cunningham
,
M. W.
,
2002
, “
Induction of Myocarditis and Valvulitis in Lewis Rats by Different Epitopes of Cardiac Myosin and Its Implications in Rheumatic Carditis
,”
Am. J. Pathol.
,
160
(
1
), pp.
297
306
.10.1016/S0002-9440(10)64373-8
You do not currently have access to this content.