Abstract

Wall shear stress (WSS) is an important mediator of cardiovascular pathologies and there is a need for its reliable evaluation as a potential prognostic indicator. The purpose of this work was to develop a method that quantifies WSS from two-dimensional (2D) phase contrast magnetic resonance (PCMR) imaging derived flow waveforms, apply this method to PCMR data acquired in the abdominal aorta of healthy volunteers, and to compare PCMR-derived WSS values to values predicted from a computational fluid dynamics (CFD) simulation. The method uses PCMR-derived flow versus time waveforms constrained by the Womersley solution for pulsatile flow in a cylindrical tube. The method was evaluated for sensitivity to input parameters, intrastudy repeatability and was compared with results from a patient-specific CFD simulation. 2D-PCMR data were acquired in the aortas of healthy men (n = 12) and women (n = 15) and time-averaged WSS (TAWSS) was compared. Agreement was observed when comparing TAWSS between CFD and the PCMR flow-based method with a correlation coefficient of 0.88 (CFD: 15.0 ± 1.9 versus MRI: 13.5 ± 2.4 dyn/cm2) though comparison of WSS values between the PCMR-based method and CFD predictions indicate that the PCMR method underestimated instantaneous WSS by 3.7 ± 7.6 dyn/cm2. We found no significant difference in TAWSS magnitude between the sexes; 8.19 ± 2.25 versus 8.07 ± 1.71 dyn/cm2, p = 0.16 for men and women, respectively.

References

1.
Brooks
,
A.
,
Lelkes
,
P.
, and
Rubanyi
,
G.
,
2002
, “
Gene Expression Profiling of Human Aortic Endothelial Cells Exposed to Disturbed Flow and Steady Laminar Flow
,”
Physiol. Genom.
,
9
(
1
), pp.
27
41
.10.1152/physiolgenomics.00075.2001
2.
Cheng
,
C.
,
Tempel
,
D.
,
Van Der Baan
,
A.
,
Krams
,
R.
,
Daemen
,
M.
,
Van Haperen
,
R.
,
Grosveld
,
F.
, and
De Crom
,
R.
,
2006
, “
Atherosclerotic Lesion Size and Vulnerability Are Determined by Patterns of Fluid Shear Stress
,”
Circulation
,
113
(
23
), pp.
2744
53
.10.1161/CIRCULATIONAHA.105.590018
3.
Malek
,
A.
,
Alper
,
S.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
4.
Shaaban
,
A.
, and
Duerinckx
,
A.
,
2000
, “
Wall Shear Stress and Early Atherosclerosis: A Review
,”
AJR Am. J. Roentgenol.
,
174
(
6
), pp.
1657
1665
.10.2214/ajr.174.6.1741657
5.
Petersson
,
S.
,
Dyverfeldt
,
P.
, and
Ebbers
,
T.
,
2012
, “
Assessment of the Accuracy of MRI Wall Shear Strss Estimation Using Numerical Simulations
,”
J. Magn. Reson. Imaging
,
36
(
1
), pp.
128
138
.10.1002/jmri.23610
6.
Chatzizisis
,
Y.
,
Jonas
,
M.
,
Edelman
,
E.
,
Feldman
,
C.
,
Stone
,
P.
, and
Coskun
,
A.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Athersclerosis and Vascular Remodeling: Molecular Cellular and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), p.
15
.10.1016/j.jacc.2007.02.059
7.
Topper
,
J.
, and
Gimbrone
,
M.
,
1999
, “
Blood Flow and Vascular Gene Expression: Fluid Shear Stress as a Modulator of Endothelial Phenotype
,”
Mol. Med. Today
, 5(1), p.
7
.10.1016/s1357-4310(98)01372-0
8.
Davies
,
P.
,
Krams
,
R.
, and
Spaan
,
J.
,
2005
, “
Shear Stress of the Endothelium
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1714
1718
.10.1007/s10439-005-8774-0
9.
Li
,
Y.
,
Chien
,
S.
, and
Haga
,
J.
,
2005
, “
Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells
,”
J. Biomech.
,
38
(
10
), p.
22
.10.1016/j.jbiomech.2004.09.03
10.
Pedersen
,
E.
,
Kristensen
,
I.
,
Yoganathan
,
A.
, and
Agerbaek
,
M.
,
1997
, “
Wall Shear Stress and Early Atherosclerotic Lesions in the Abdominal Aorta in Young Adults
,”
Eur. J. Vasc. Surg.
,
13
(
5
), p.
8
.10.1016/s1078-5884(97)80171-2
11.
Moore
,
J. E.
,
Glagov
,
S.
,
Zarins
,
C. K.
,
Ku
,
D. N.
, and
Xu
,
C.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atheroscelerosis
,
110
(
2
), pp.
225
240
.10.1016/0021-9150(94)90207-0
12.
Brown
,
P.
,
Sobolev
,
B.
, and
Zelt
,
D.
,
2003
, “
The Risk of Rupture in Untreated Aneurysms: The Impact of Size, Gender, and Expansion Rate
,”
J. Vasc. Surg.
,
37
(
2
), pp.
280
284
.10.1067/mva.2003.119
13.
Starr
,
J.
, and
Halpern
,
V.
,
2013
, “
Abdominal Aortic Aneurysms in Women
,”
J. Vasc. Surg.
,
57
(Suppl. 4), p.
3S–10S
.10.1016/j.jvs.2012.08.125
14.
Harthun
,
N. L.
,
2008
, “
Current Issues in the Treatment of Women With Abdominal Aortic Aneurysm
,”
Gend. Med.
,
5
(
1
), pp.
36
43
.10.1016/S1550-8579(08)80006-X
15.
Grootenboer
,
N.
,
Bosch
,
J.
,
Hendriks
,
J.
, and
van Sambeek
,
M.
,
2009
, “
Epidemiology, Aetoilogy, Risk of Rupture and Treatment of Abdominal Aortic Aneurysms: Does Sex Matter?
,”
Eur. J. Vasc. Endovasc. Surg.
,
38
(
3
), pp.
278
284
.10.1016/j.ejvs.2009.05.004
16.
Amirbekian
,
S.
,
Long
,
R.
,
Consolini
,
M.
,
Suo
,
J.
,
Willett
,
N.
,
Fielden
,
S.
,
Giddens
,
D.
,
Taylor
,
W.
, and
Oshinski
,
J.
,
2009
, “
In Vivo Assessment of Blood Flow Patterns in Abdominal Aorta of Mice With MRI: Implications for AAA Localization
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
4
), pp. H1290–H1295.10.1152/ajpheart.00889.2008
17.
Taylor
,
W. R.
,
Iffrig
,
E.
,
Veneziani
,
A.
,
Oshinski
,
J. N.
, and
Smolensky
,
A.
,
2016
, “
Sex and Vascular Biomechanics: A Hypothesis for the Mechanism Underlying Differences in the Prevalence of Abdominal Aortic Aneurysms in Men and Women
,”
Trans. Am. Clin. Climatol. Assoc.
,
127
, pp.
148
161
.https://pubmed.ncbi.nlm.nih.gov/28066050/
18.
Nayler
,
G.
,
Firmin
,
D. N.
, and
Longmore
,
D.
,
1986
, “
Blood Flow Imaging by Cine Magnetic Resonance
,”
J. Comput. Assist. Tomogr.
,
10
(
5
), pp.
715
722
.10.1097/00004728-198609000-00001
19.
Lotz
,
J.
,
Meier
,
C.
,
Leppert
,
A.
, and
Galanski
,
M.
,
2002
, “
Cardiovascular Flow Measurement With Phase-Contrast MR Imaging: Basic Facts and Implementation
,”
Radiographics
,
22
(
3
), pp.
651
671
.10.1148/radiographics.22.3.g02ma11651
20.
Gatehouse
,
P.
,
Keegan
,
J.
,
Crowe
,
L.
,
Masood
,
S.
,
Modiaddin
,
R.
,
Kreitner
,
K.
, and
Firmin
,
D.
,
2005
, “
Applications of Phase-Contrast Flow and Velocity Imaging in Cardiovascular MRI
,”
Eur. Radiol.
,
15
(
10
), pp.
20172
22184
.10.1007/s00330-005-2829-3
21.
Burk
,
J.
,
Blanke
,
P.
,
Stankovic
,
Z.
,
Barker
,
A.
,
Russe
,
M.
,
Geiger
,
J.
,
Frydrychowicz
,
A.
,
Langer
,
M.
, and
Markl
,
M.
,
2012
, “
Evaluation of 3D Blood Flow Patterns and Wall Shear Stress in the Normal and Dilated Thoracic Aorta Using Flow-Sensitive 4D CMR
,”
J. Cardiovasc. Magn. Reson.
,
14
(
1
), p.
84
.10.1186/1532-429X-14-84
22.
Pipe
,
J. G.
,
2003
, “
A Simple Measure of Flow Disorder and Wall Shear Stress in Phase Contrast MRI
,”
Magn. Reson. Med.
,
49
(
3
), pp.
543
550
.10.1002/mrm.10409
23.
Osinnski
,
J. N.
,
Ku
,
D. N.
,
Mukundan
,
S.
,
Loth
,
F.
, and
Pettigrew
,
R. I.
,
1995
, “
Determination of Wall Shear Stress in the Aorta With the Use of MR Phase Velocity Mapping
,”
J. Magn. Reson. Imaging
,
5
(
6
), pp.
640
647
.10.1002/jmri.1880050605
24.
Pantos
,
I.
,
Patatoukas
,
G.
,
Efstathopoulos
,
E. P.
, and
Katritsis
,
D.
,
2007
, “
In Vivo Wall Shear Stress Measurements Using Phase-Contrast MRI
,”
Expert Rev. Cardiovasc. Ther. Cardiovasc. Ther.
,
5
(
5
), pp.
927
938
.10.1586/14779072.5.5.927
25.
Siegel
,
J.
, Jr.
,
Oshinski
,
J.
,
Pettigrew
,
R.
, and
Ku
,
D.
,
1996
, “
The Accuracy of Magnetic Resonance Phase Velocity Measurements in Stenotic Flow
,”
J. Biomech.
,
29
(
12
), pp.
1665
1672
.10.1016/S0021-9290(96)80023-6
26.
Greil
,
G.
,
Geva
,
T.
,
Maier
,
S. E.
, and
Powell
,
A. J.
,
2002
, “
Effect of Acquisition Parameters on the Accuracy of Velocity Encoded Cine Magnetic Resonance Imaging Blood Flow Measurements
,”
J. Magn. Reson. Imaging
,
15
(
1
), pp.
47
54
.10.1002/jmri.10029
27.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow, and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.10.1113/jphysiol.1955.sp005276
28.
Moore
,
J. E.
,
Maier
,
S. E.
,
Ku
,
D. N.
, and
Boesiger
,
P.
,
1994
, “
Hemodynamics in the Abdominal Aorta: A Comparison of In Vitro and In Vivo Measurements
,”
J. Appl. Physiol.
,
76
(
4
), pp.
1520
1527
.10.1152/jappl.1994.76.4.1520
29.
Edelman
,
R.
,
Dunkle
,
E.
,
Schindler
,
N.
,
Carr
,
J.
,
Koktzoglou
,
I.
, and
Sheehan
,
J.
,
2010
, “
Quiescent-Interval Single-Shot Unenhanced Magnetic Resonance Angiography of Peripheral Vascular Disease: Technical Considerations and Clinical Feasibility
,”
Magn. Reson. Imaging
,
63
(
4
), pp.
951
958
.10.1002/mrm.22287
30.
Bidhult
,
S.
,
Carlsson
,
M.
,
Steding-Ehrenborg
,
K.
,
Arheden
,
H.
, and
Heiberg
,
E.
,
2014
, “
A New Method for Vessel Segmentation Based on a Priori Input From Medical Expertise in Cine Phase-Contrast Magnetic Resonance Imaging
,”
J. Cardiovasc. Magn. Reson
., 16, p.
355
.10.1186/1532-429X-16-S1-P355
31.
He
,
X.
,
Ku
,
D.
, and
Moore
,
J.
,
1993
, “
Simple Calculation of the Velocity Profiles for Pulsatile Flow in a Blood Vessel Using Mathematica
,”
Ann. Biomed. Eng.
,
21
(
1
), pp.
45
49
.10.1007/BF02368163
32.
Timmins
,
L.
,
Molony
,
D.
,
Eshtehardi
,
P.
,
McDaniel
,
M.
,
Oshinski
,
J.
,
Samady
,
H.
, and
Giddens
,
D.
,
2015
, “
Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
94
106
.10.1007/s10439-014-1155-9
33.
McBridge
,
G.
,
2005
,
A Proposal for Strength-of-Agreement Criteria for Lin's Concordance Correlation Coefficient
,
NIWA
, Hamilton, New Zealand.
34.
Gao
,
X.
,
Starmer
,
J.
, and
Martin
,
E. R.
,
2008
, “
A Multiple Testing Correction Method for Genetic Association Studies Using Correlated Single Nucleotide Polymorphisms
,”
Genet. Epidemiol.
,
32
(
4
), pp.
361
369
.10.1002/gepi.20310
35.
Oyre
,
S.
,
Ringgaard
,
S.
,
Kozerke
,
S.
,
Paaske
,
W. P.
,
Scheidegger
,
M. B.
,
Boesiger
,
P.
, and
Pedersen
,
E. M.
,
1998
, “
Quantitation of Circumferential Subpixel Vessel Wall Position and Wall Shear Stress by Multiple Sectored Three-Dimensional Paraboloid Modeling of Velocity Encoded Cine MR
,”
Magn. Reson. Med.
,
40
(
5
), pp.
645
655
.10.1002/mrm.1910400502
36.
Perinajová
,
R.
,
Juffermans
,
J.
,
Westenberg
,
J.
,
van der Palen
,
R.
,
van den Boogaard
,
P.
,
Lamb
,
H.
, and
Kenjereš
,
S.
,
2021
, “
Geometrically Induced Wall Shear Stress Variability in CFD-MRI Coupled Simulations of Blood Flow in the Thoracic Aortas
,”
Comput. Biol. Med.
,
133
, p.
104385
.10.1016/j.compbiomed.2021.104385
37.
Ku
,
D.
,
Giddens
,
D.
,
Zarins
,
C.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress
,”
Aeteriosclerosis
,
5
(
3
), pp.
293
302
.10.1161/01.ATV.5.3.293
38.
Nguyen
,
N.
, and
Haque
,
A.
,
1990
, “
Effect of Hemodynamics Factors on Atherosclerosis in the Abdominal Aorta
,”
Atheroscelerosis
,
84
(
1
), pp.
33
39
.10.1016/0021-9150(90)90005-4
39.
Pedersen
,
E. M.
,
Oyre
,
S.
,
Agerbæk
,
M.
,
Kristensen
,
I. B.
,
Ringgaard
,
S.
,
Boesiger
,
P.
, and
Paaske
,
W. P.
,
1999
, “
Distribution of Early Atherosclerotic Lesions in the Human Abdominal Aorta Correlates With Wall Shear Stresses Measured In Vivo
,”
Eur. J. Vasc. Surg.
,
18
(
4
), pp.
328
333
.10.1053/ejvs.1999.0913
40.
Cecchi
,
E.
,
Valente
,
S.
,
Lazzeri
,
C.
,
Gensini
,
G.
,
Abbate
,
R.
,
Mannini
,
L.
, and
Giglioli
,
C.
,
2011
, “
Role of Hemodynamic Shear Stress in Cardiovascular Disease
,”
Atherosclerosis
,
214
(
2
), pp.
249
256
.10.1016/j.atherosclerosis.2010.09.008
41.
Peiffer
,
V.
,
Sherwin
,
S.
, and
Weinberg
,
P.
,
2013
, “
Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review
,”
Cardiovasc. Res.
,
99
(
2
), pp.
242
250
.10.1093/cvr/cvt044
42.
Morris
,
P. D.
,
Narracott
,
A.
,
von Tengg-Kobligk
,
H.
,
Silva Soto
,
D. A.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evans
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.10.1136/heartjnl-2015-308044
43.
S
,
J.
,
J
,
O.
, and
DP
,
G.
,
2003
, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
347
354
.10.1115/1.1574332
44.
Cibis
,
M.
,
Potters
,
W.
,
Gijsen
,
F.
,
Marquering
,
H.
,
van Ooij
,
P.
,
VanBavel
,
E.
,
Wentzel
,
J.
, and
Nederveen
,
A.
,
2016
, “
The Effect of Spatial and Temporal Resolution of Cine Phase Contrast MRI on Wall Shear Stress and Oscillatory Shear Index Assessment
,”
PLoS One
,
11
(
9
), p.
e0163316
.10.1371/journal.pone.0163316
45.
Cibis
,
M.
,
Potters
,
W.
,
Selwaness
,
M.
,
Gijsen
,
F.
,
Franco
,
O.
,
Lorza
,
A.
,
Bruijne
,
M.
,
Hofman
,
A.
,
Lugt
,
A.
,
Nederveen
,
A.
, and
Wentzel
,
J.
,
2016
, “
Relation Between Wall Shear Stress and Carotid Artery Wall Thickening MRI Versus CFD
,”
J. Biomech.
,
49
(
5
), pp.
735
741
.10.1016/j.jbiomech.2016.02.004
46.
Corso
,
P.
,
Walheim
,
J.
,
Dillinger
,
H.
,
Giannakopoulos
,
G.
,
Gülan
,
U.
,
Frouzakis
,
C.
,
Kozerke
,
S.
, and
Holzner
,
M.
,
2021
, “
Toward an Accurate Estimation of Wall Shear Stress From 4D Flow Magnetic Resonance Downstream of a Severe Stenosis
,”
Magn. Reson. Med.
,
86
(
3
), pp.
1531
1543
.10.1002/mrm.28795
47.
Gharahi
,
H.
,
Zambrano
,
B.
,
Zhu
,
D.
,
DeMarco
,
J.
, and
Baek
,
S.
,
2016
, “
Computational Fluid Dynamic Simulation of Human Carotid Artery Bifurcation Based on Anatomy and Volumetric Blood Flow Rate Measured With Magnetic Resonance Imaging
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
8
(
1
), pp.
46
60
.10.1007/s12572-016-0161-6
48.
Szajer
,
J.
, and
Ho-Shon
,
K.
,
2018
, “
A Comparison of 4D Flow MRI-Derived Wall Shear Stress With Computational Fluid Dynamics Methods for Intracranial Aneurysms and Carotid Bifurcations—A Review
,”
Magn. Reson. Imaging
,
48
, pp.
62
69
.10.1016/j.mri.2017.12.005
49.
Köhler
,
U.
,
Marshall
,
I.
,
Robertson
,
M.
,
Long
,
Q.
,
Xu
,
X.
, and
Hoskins
,
P.
,
2001
, “
MRI Measurement of Wall Shear Stress Vectors in Bifurcation Models and Comparison With CFD Predictions
,”
J. Magn. Reson. Imaging
,
14
(
5
), pp.
563
573
.10.1002/jmri.1220
50.
Wanhainen
,
A.
,
Mani
,
K.
, and
Svensjo
,
S.
,
2008
, “
Screening for AAA – Areas Where Information is Still Inadequate
,”
Scand. J. Surg.
,
97
(
2
), pp.
131
135
.10.1177/145749690809700211
51.
Lo
,
R.
,
Bensley
,
R.
,
Hamdan
,
A.
,
Wyers
,
M.
,
Adams
,
J.
, and
Schermerhorn
,
M.
,
2013
, “
Gender Differences in Abdominal Aortic Aneurysm Presentation, Repair, and Mortality in the Vascular Study Group of New England
,”
J. Vasc. Surg.
,
57
(
5
), pp.
1261
1268.e5
.10.1016/j.jvs.2012.11.039
52.
Norman
,
P.
, and
Powell
,
J.
,
2007
, “
Abdominal Aortic Aneurysm: The Prognosis in Women is Worse Than in Men
,”
Circulation
,
115
(
22
), pp.
2865
2869
.10.1161/CIRCULATIONAHA.106.671859
53.
Larsson
,
E.
,
Labruto
,
F.
,
Gasser
,
T. C.
,
Swedenborg
,
J.
, and
Hultgren
,
R.
,
2011
, “
Analysis of Aortic Wall Stress and Rupture Risk in Patients With Abdominal Aortic Aneurysm With a Gender Perspective
,”
J. Vasc. Surg.
,
54
(
2
), pp.
295
299
.10.1016/j.jvs.2010.12.053
54.
Iffrig
,
E.
,
Wilson
,
J. S.
,
Zhong
,
X.
, and
Oshinski
,
J. N.
,
2019
, “
Demonstration of Circumferential Heterogeneity in Displacement and Strain in the Abdominal Aortic Wall by Spiral Cine DENSE MRI
,”
J. Magn. Reson. Imaging
,
49
(
3
), pp.
731
743
.10.1002/jmri.26304
55.
Motomiya
,
M.
, and
Karino
,
T.
,
1984
, “
Flow Patterns in the Human Carotid Artery Bifurcation
,”
Stroke
,
15
(
1
), pp.
50
56
.10.1161/01.STR.15.1.50
56.
Dua
,
M.
, and
Dalman
,
R.
,
2010
, “
Hemodynamic Influences on Abdominal Aortic Aneurysm Disease: Application to Aneurysm Pathophysiology
,”
Vascul. Pharmacol.
,
53
(
1–2
), pp.
11
21
.10.1016/j.vph.2010.03.004
57.
Vignon-Clementel
,
I. E.
,
Alberto Figueroa
,
C.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
You do not currently have access to this content.