Abstract

This research aimed to examine the impact of a proposed flow stent (PFS) on different abdominal artery shapes. For that purpose, a finite element-based model using the computational fluid dynamics (CFD) method is developed. The effect of PFS intervention on the hemodynamic efficiency is estimated by all of the significant criteria used for the evaluation of aneurysm occlusion and possible rupture; the flow velocity, pressure, wall shear stress (WSS), and WSS-related indices. Results showed that PFS intervention preserves the effects of high flowrate and decreases irregular flow recirculation in the sac of the aneurysm. The flow velocity reduction inside the aneurysm sac is in the range of 55% to 80% and the time-averaged wall shear stress (TAWSS) reduction is in the range of 42% to 53% by PFS deployment. The simulation results implies that PFS could heal an aneurysm efficiently with a mechanism that causes the development of thrombus and ultimately leads to aneurysm resorption.

References

1.
Virani
,
S. S.
,
Alonso
,
A.
,
Aparicio
,
H. J.
,
Benjamin
,
E. J.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
Chamberlain
,
A. M.
,
Cheng
,
S.
,
Delling
,
F. N.
,
Elkind
,
M. S. V.
,
Evenson
,
K. R.
,
Ferguson
,
J. F.
,
Gupta
,
D. K.
,
Khan
,
S. S.
,
Kissela
,
B. M.
,
Knutson
,
K. L.
,
Lee
,
C. D.
,
Lewis
,
T. T.
,
Liu
,
J.
,
Loop
,
M. S.
,
Lutsey
,
P. L.
,
Ma
,
J.
,
Mackey
,
J.
,
Martin
,
S. S.
,
Matchar
,
D. B.
,
Mussolino
,
M. E.
,
Navaneethan
,
S. D.
,
Perak
,
A. M.
,
Roth
,
G. A.
,
Samad
,
Z.
,
Satou
,
G. M.
,
Schroeder
,
E. B.
,
Shah
,
S. H.
,
Shay
,
C. M.
,
Stokes
,
A.
,
VanWagner
,
L. B.
,
Wang
,
N.-Y.
, and
Tsao
,
C. W.
,
a report from the
2021
, “
Heart Disease and Stroke Statistics—2021 Update
,”
Am. Heart Assoc. Circ.
,
143
(
8
), pp.
e254
e743
.10.1161/CIR.0000000000000950
2.
Karthaus
,
E. G.
,
Tong
,
T. M.
,
Vahl
,
A.
, and
Hamming
,
J. F.
,
2019
, “
Saccular Abdominal Aortic Aneurysms: Patient Characteristics, Clinical Presentation, Treatment, and Outcomes in The Netherlands
,”
Ann. Surg.
,
270
(
5
), pp.
852
858
.10.1097/SLA.0000000000003529
3.
Mc Namara
,
K.
,
Alzubaidi
,
H.
, and
Jackson
,
J. K.
,
2019
, “
Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved
?”
Integr. Pharmacy Res. Practice
,
8
, pp.
1
11
.10.2147/IPRP.S133088
4.
Ulug
,
P.
,
Powell
,
J. T.
,
Martinez
,
M. A.
,
Ballard
,
D. J.
, and
Filardo
,
G.
,
Cochrane Vascular Group
2020
, “
Surgery for Small Asymptomatic Abdominal Aortic Aneurysms
,”
Cochrane Database Systematic Rev.
,
2020
(
7
), p.
CD001835
.10.1002/14651858.CD001835.pub5
5.
Antoniou
,
G. A.
,
Antoniou
,
S. A.
, and
Torella
,
F.
,
2020
, “
Editor's Choice–Endovascular vs. open Repair for Abdominal Aortic Aneurysm: Systematic Review and Meta-Analysis of Updated Peri-Operative and Long Term Data of Randomised Controlled Trials
,”
Eur. J. Vasc. Endovascular Surg.
59
(
3
), pp.
385
397
.10.1016/j.ejvs.2019.11.030
6.
Gharahi
,
H.
,
Zambrano
,
B. A.
,
Lim
,
C.
,
Choi
,
J.
,
Lee
,
W.
, and
Baek
,
S.
,
2015
, “
On Growth Measurements of Abdominal Aortic Aneurysms Using Maximally Inscribed Spheres
,”
Med. Eng. Phys.
,
37
(
7
), pp.
683
691
.10.1016/j.medengphy.2015.04.011
7.
Buradi
,
A.
, and
Mahalingam
,
A.
,
2020
, “
Impact of Coronary Tortuosity on the Artery Hemodynamics
,”
Biocyber. Biomed. Eng.
,
40
(
1
), pp.
126
147
.10.1016/j.bbe.2019.02.005
8.
Farsad
,
M.
,
Zeinali-Davarani
,
S.
,
Choi
,
J.
, and
Baek
,
S.
,
2015
, “
Computational Growth and Remodeling of Abdominal Aortic Aneurysms Constrained by the Spine
,”
ASME J. Biomech. Eng.
,
137
(
9
), pp.
1
12
.10.1115/1.4031019
9.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.10.1007/s10439-013-0786-6
10.
Zambrano
,
B. A.
,
Gharahi
,
H.
,
Lim
,
C.
,
Jaberi
,
F. A.
,
Choi
,
J.
,
Lee
,
W.
, and
Baek
,
S.
,
2016
, “
Association of Intraluminal Thrombus, Hemodynamic Forces, and Abdominal Aortic Aneurysm Expansion Using Longitudinal CT Images
,”
Ann. Biomed. Eng.
,
44
(
5
), pp.
1502
1514
.10.1007/s10439-015-1461-x
11.
Martufi
,
G.
,
Lindquist Liljeqvist
,
M.
,
Sakalihasan
,
N.
,
Panuccio
,
G.
,
Hultgren
,
R.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2016
, “
Local Diameter, Wall Stress, and Thrombus Thickness Influence the Local Growth of Abdominal Aortic Aneurysms
,”
J. Endovasc, Ther.
,
23
(
6
), pp.
957
966
.10.1177/1526602816657086
12.
Liakishev
,
A. A.
,
2004
, “
Comparison of Endovascular Aneurysm Repair With Open Repair in Patients With Abdominal Aortic Aneurysm, 30-Day Operative Mortality RESULTS: Randomised Controlled Trial. Results of the EVAR 1
,”
Trial. fdsKardiologiia
,
44
(
11
), p.
90
.https://pubmed.ncbi.nlm.nih.gov/15602450/
13.
Cooper
,
A.
,
2014
, “
Endovascular Repair of Abdominal Aortic Aneurysm
,”
Crit. Care Nurse
,
34
(
4
), pp.
87
92
.10.4037/ccn2014184
14.
Chong
,
C. K.
,
How
,
T. V.
, and
Harris
,
P. L.
,
2005
, “
Flow Visualization in a Model of a Bifurcated Stent-Graft
,”
J. Endovascular Ther.
12
(
4
), pp.
435
445
.10.1583/04-1465.1
15.
Coselli
,
J. S.
, and
Green
,
S. Y.
,
2013
, “
A Brief History of Aortic Surgery: Insight Into Distal Aortic Repair
,”
J. Thorac. Cardiovasc, Surg
,,
145
(
3
), pp.
S123
S125
.10.1016/j.jtcvs.2012.11.052
16.
Gupta
,
P. K.
,
Brahmbhatt
,
R.
,
Kempe
,
K.
,
Stickley
,
S. M.
, and
Rohrer
,
M. J.
,
2017
, “
Thirty-Day Outcomes After Fenestrated Endovascular Repair Are Superior to Open Repair of Abdominal Aortic Aneurysms Involving Visceral Vessels
,”
J. Vasc. Surg.
,
66
(
6
), pp.
1653
1658
.10.1016/j.jvs.2017.04.057
17.
Lieber
,
B. B.
,
Livescu
,
V.
,
Hopkins
,
L. N.
, and
Wakhloo
,
A. K.
,
2002
, “
Particle Image Velocimetry Assessment of Stent Design Influence on Intra-Aneurysmal Flow
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
768
777
.10.1114/1.1495867
18.
Nada
,
A.
,
Hassan
,
M. A.
,
Fakhr
,
M. A.
, and
El-Wakad
,
M. T.
,
2021
, “
Studying the Effect of Stent Thickness and Porosity on Post-Stent Implantation Hemodynamics
,”
J. Med. Eng. Technol.
,
45
(
5
), pp.
408
416
.10.1080/03091902.2021.1912204
19.
Abdollahi
,
R.
,
Vahidi
,
B.
,
Shojaee
,
P.
, and
Karimi
,
M.
,
2021
, “
A Comparative Study Between CFD and FSI Hemodynamic Parameters in a Patient-Specific Giant Saccular Cerebral Aneurysm
,”
AUT J. Model. Simul.
,
53
, pp.
1
14
.10.22060/MISCJ.2020.18742.5222
20.
Li
,
Y.
,
Zhang
,
M.
,
Verrelli
,
D. I.
,
Chong
,
W.
,
Ohta
,
M.
, and
Qian
,
Y.
,
2018
, “
Numerical Simulation of Aneurysmal Haemodynamics With Calibrated Porous-Medium Models of Flow-Diverting Stents
,”
J. Biomech.
,
80
, pp.
88
94
.10.1016/j.jbiomech.2018.08.026
21.
Murayama
,
Y.
,
Fujimura
,
S.
,
Suzuki
,
T.
, and
Takao
,
H.
,
2019
, “
Computational Fluid Dynamics as a Risk Assessment Tool for Aneurysm Rupture
,”
Neurosurg. Focus
,
47
(
1
), p.
E12
.10.3171/2019.4.FOCUS19189
22.
Nada
,
A.
,
Hassan
,
M. A.
,
Fakhr
,
M. A.
, and
El-Wakad
,
M. T.
,
2021
, “
Comparison Study of Flow Diverting Stents for the Treatment of a Patient-Specific Abdominal Aortic Aneurysm
,” 3rd Novel Intelligent and Leading Emerging Sciences Conference (
NILES
), Giza, Egypt, Oct. 23–25, pp.
109
112
.10.1109/NILES53778.2021.9600094
23.
Li
,
Z.
,
Hu
,
L.
,
Chen
,
C.
,
Wang
,
Z.
,
Zhou
,
Z.
, and
Chen
,
Y.
,
2019
, “
Hemodynamic Performance of Multilayer Stents in the Treatment of Aneurysms With a Branch Attached
,”
Sci. Rep.
,
9
(
1
), p.
10
.10.1038/s41598-019-46714-7
24.
Benjelloun
,
A.
,
Henry
,
M.
,
Ghannam
,
A.
,
Vaislic
,
C.
,
Azzouzi
,
A.
,
Maazouzi
,
W.
,
Khlifi
,
A.
, and
Benamor
,
J.
,
2012
, “
Endovascular Treatment of a Tuberculous Thoracoabdominal Aneurysm With the Multilayer Stent
,”
J. Endovasc.Ther.
,
19
(
1
), pp.
115
120
.10.1583/11-3551.1
25.
Natrella
,
M.
,
Castagnola
,
M.
,
Navarretta
,
F.
,
Cristoferi
,
M.
,
Fanelli
,
G.
,
Meloni
,
T.
, and
Peinetti
,
F.
,
2012
, “
Treatment of Juxtarenal Aortic Aneurysm With the Multilayer Stent
,”
J. Endovasc. Ther.
,
19
(
1
), pp.
121
124
.10.1583/11-3398.1
26.
Sultan
,
S.
, and
Hynes
,
N.
,
2015
, “
Multilayer Flow Modulator Stent Technology: A Treatment Revolution for U.S. Patients?
Expert Rev. Med. Dev.
,
12
(
3
), pp.
217
221
.10.1586/17434440.2015.1030339
27.
Biasetti
,
J.
,
Gasser
,
T. C.
,
Auer
,
M.
,
Hedin
,
U.
, and
Labruto
,
F.
,
2010
, “
Hemodynamics of the Normal Aorta Compared to Fusiform and Saccular Abdominal Aortic Aneurysms With Emphasis on a Potential Thrombus Formation Mechanism
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
380
390
.10.1007/s10439-009-9843-6
28.
Henry
,
M.
,
Polydorou
,
A.
,
Frid
,
N.
,
Gruffaz
,
P.
,
Cavet
,
A.
,
Henry
,
I.
,
Hugel
,
M.
,
Rüfenacht
,
D. A.
,
Augsburger
,
L.
,
De Beule
,
M.
,
Verdonck
,
P.
,
Bonneau
,
M.
,
Kang
,
C.
,
Ouared
,
R.
, and
Chopard
,
B.
,
2008
, “
Treatment of Renal Artery Aneurysm With the Multilayer Stent
,”
J. Endovasc. Ther.
,
15
(
2
), pp.
231
236
.10.1583/07-2222.1
29.
Rikhtegar Nezami
,
F.
,
Athanasiou
,
L. S.
,
Amrute
,
J. M.
, and
Edelman
,
E. R.
,
2018
, “
Multilayer Flow Modulator Enhances Vital Organ Perfusion in Patients With Type B Aortic Dissection
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
315
(
5
), pp.
H1182
H1193
.10.1152/ajpheart.00199.2018
30.
Yeow
,
S. L.
, and
Leo
,
H. L.
,
2016
, “
Hemodynamic Study of Flow Remodeling Stent Graft for the Treatment of Highly Angulated Abdominal Aortic Aneurysm
,”
Comput. Math. Methods Med.
,
2016
, pp.
1
10
.10.1155/2016/3830123
31.
Yeow
,
S. L.
, and
Leo
,
H. L.
,
2018
, “
Is Multiple Overlapping Uncovered Stents Technique Suitable for Aortic Aneurysm Repair?
,”
Artif. Organs.
42
(
2
), pp.
174
183
.10.1111/aor.12993
32.
Wang
,
S.
,
Zhang
,
Y.
,
Feng
,
J.
,
Huang
,
Y.
,
Tokgoz
,
A.
,
Sadat
,
U.
,
Gillard
,
J. H.
,
Lu
,
Q.
, and
Teng
,
Z.
,
2017
, “
Influence of Overlapping Pattern of Multiple Overlapping Uncovered Stents on the Local Mechanical Environment: A Patient-Specific Parameter Study
,”
J. Biomech.
,
60
, pp.
188
196
.10.1016/j.jbiomech.2017.06.048
33.
Shih
,
R.
, and
Schilling
,
P.
,
2021
,
Parametric Modeling With SOLIDWORKS 2021
,
SDC Publications
, Mission, KS.
34.
COMSOL, 2022, “
COMSOL – Multiphysics Modeling and Simulation Software
,”
COMSOL
.
35.
Salman
,
H. E.
,
Ramazanli
,
B.
,
Yavuz
,
M. M.
, and
Yalcin
,
H. C.
,
2019
, “
Biomechanical Investigation of Disturbed Hemodynamics-Induced Tissue Degeneration in Abdominal Aortic Aneurysms Using Computational and Experimental Techniques
,”
Front. Bioeng. Biotechnol.
,
7
, pp.
1
27
.10.3389/fbioe.2019.00111
36.
Soudah
,
E.
,
Ng
,
E. Y.
,
Loong
,
T. H.
,
Bordone
,
M.
,
Pua
,
U.
, and
Narayanan
,
S.
,
2013
, “
CFD Modelling of Abdominal Aortic Aneurysm on Hemodynamic Loads Using a Realistic Geometry With CT
,”
Comput. Math. Methods Med..
,
2013
, pp.
1
9
.10.1155/2013/472564
37.
Catalán-Echeverría
,
B.
,
Kelly
,
M. E.
,
Peeling
,
L.
,
Bergstrom
,
D.
,
Chen
,
X.
, and
Malvè
,
M.
,
2019
, “
CFD-Based Comparison Study of a New Flow Diverting Stent and Commercially-Available Ones for the Treatment of Cerebral Aneurysms
,”
Appl. Sci.
,
9
(
7
), p.
1341
.10.3390/app9071341
38.
Arzani
,
A.
,
Gambaruto
,
A. M.
,
Chen
,
G.
, and
Shadden
,
S. C.
,
2017
, “
Wall Shear Stress Exposure Time: A Lagrangian Measure of Near-Wall Stagnation and Concentration in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
787
803
.10.1007/s10237-016-0853-7
39.
Seshadhri
,
S.
,
Janiga
,
G.
,
Beuing
,
O.
,
Skalej
,
M.
, and
Thevenin
,
D.
,
2011
, “
Impact of Stents and Flow Diverters on Hemodynamics in Idealized Aneurysm Models
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071005
.10.1115/1.4004410
40.
Xiang
,
J.
,
Natarajan
,
S. K.
,
Tremmel
,
M.
,
Ma
,
D.
,
Mocco
,
J.
,
Hopkins
,
L. N.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
, and
Meng
,
H.
,
2011
, “
Hemodynamic-Morphologic Discriminants for Intracranial Aneurysm Rupture
,”
Stroke
,
42
(
1
), pp.
144
152
.10.1161/STROKEAHA.110.592923
41.
Di Achille
,
P.
,
Tellides
,
G.
,
Figueroa
,
C. A.
, and
Humphrey
,
J. D.
,
2014
, “
A Haemodynamic Predictor of Intraluminal Thrombus Formation in Abdominal Aortic Aneurysms
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
, 470(2172), p. 0163.10.1098/rspa.2014.0163
42.
Kelsey
,
L. J.
,
Powell
,
J. T.
,
Norman
,
P. E.
,
Miller
,
K.
, and
Doyle
,
B. J.
,
2017
, “
A Comparison of Hemodynamic Metrics and Intraluminal Thrombus Burden in a Common Iliac Artery Aneurysm
,”
Int. J. Numer. Methods Biomed. Eng.
, 33(5), p. e2821.10.1002/cnm.2821
43.
Deyranlou
,
A.
,
Naish
,
J. H.
,
Miller
,
C. A.
,
Revell
,
A.
, and
Keshmiri
,
A.
,
2020
, “
Numerical Study of Atrial Fibrillation Effects on Flow Distribution in Aortic Circulation
,”
Ann. Biomed. Eng.
,
48
(
4
), pp.
1291
1298
.10.1007/s10439-020-02448-6
44.
Voß
,
S.
,
Beuing
,
O.
,
Janiga
,
G.
, and
Berg
,
P.
,
2019
, “
Stent-Induced Vessel Deformation After Intracranial Aneurysm Treatment–A Hemodynamic Pilot Study
,”
Comput. Biol. Med.
,
111
, p.
103338
.10.1016/j.compbiomed.2019.103338
45.
Singh
,
J.
,
Brunner
,
G.
,
Morrisett
,
J. D.
,
Ballantyne
,
C. M.
,
Lumsden
,
A. B.
,
Shah
,
D. J.
, and
Decuzzi
,
P.
,
2018
, “
Patient-Specific Flow Descriptors and Normalised Wall Index in Peripheral Artery Disease: A Preliminary Study
,”
Comput. Methods Biomech. Biomed. Eng.: Imag Visual.
,
6
(
2
), pp.
119
127
.10.1080/21681163.2016.1184589
46.
Zhang
,
P.
,
Liu
,
X.
,
Sun
,
A.
,
Fan
,
Y.
, and
Deng
,
X.
,
2015
, “
Hemodynamic Insight Into Overlapping Bare-Metal Stents Strategy in the Treatment of Aortic Aneurysm
,”
J. Biomech.
,
48
(
10
), pp.
2041
2046
.10.1016/j.jbiomech.2015.03.028
47.
Sultan
,
S.
, and
Hynes
,
N.
,
2013
, “
One-Year Results of the Multilayer Flow Modulator Stent in the Management of Thoracoabdominal Aortic Aneurysms and Type B Dissections
,”
J. Endovasc. Ther.
,
20
(
3
), pp.
366
377
.10.1583/12-4077MR-R.1
48.
Sultan
,
S.
,
Hynes
,
N.
, and
Sultan
,
M.
,
2014
, “
When Not to Implant the Multilayer Flow Modulator: Lessons Learned From Application Outside the Indications for Use in Patients With Thoracoabdominal Pathologies
,”
J. Endovasc. Ther.
,
21
(
1
), pp.
96
112
.10.1583/13-4514MR.1
49.
Mohamied
,
Y.
,
Rowland
,
E. M.
,
Bailey
,
E. L.
,
Sherwin
,
S. J.
,
Schwartz
,
M. A.
, and
Weinberg
,
P. D.
,
2015
, “
Change of Direction in the Biomechanics of Atherosclerosis
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
16
25
.10.1007/s10439-014-1095-4
50.
Djukic
,
T.
,
Saveljic
,
I.
,
Pelosi
,
G.
,
Parodi
,
O.
, and
Filipovic
,
N.
,
2021
, “
A Study on the Accuracy and Efficiency of the Improved Numerical Model for Stent Implantation Using Clinical Data
,”
Comput. Methods Programs Biomed.
,
207
, p.
106196
.10.1016/j.cmpb.2021.106196
51.
Ong
,
C.
,
Xiong
,
F.
,
Kabinejadian
,
F.
,
Kumar
,
G. P.
,
Cui
,
F.
,
Chen
,
G.
,
Ho
,
P.
, and
Leo
,
H.
,
2019
, “
Hemodynamic Analysis of a Novel Stent Graft Design With Slit Perforations in Thoracic Aortic Aneurysm
,”
J Biomech.
,
85
, pp.
210
217
.10.1016/j.jbiomech.2019.01.019
52.
Qiu
,
Y.
,
Wang
,
Y.
,
Fan
,
Y.
,
Peng
,
L.
,
Liu
,
R.
,
Zhao
,
J.
,
Yuan
,
D.
, and
Zheng
,
T.
,
2019
, “
Role of Intraluminal Thrombus in Abdominal Aortic Aneurysm Ruptures: A Hemodynamic Point of View
,”
Med. Phys.
,
46
(
9
), pp.
4263
4275
.10.1002/mp.13658
53.
Zhu
,
G. Y.
,
Wei
,
Y.
,
Su
,
Y. L.
,
Yuan
,
Q.
, and
Yang
,
C. F.
,
2019
, “
Impacts of Internal Carotid Artery Revascularization on Flow in Anterior Communicating Artery Aneurysm: A Preliminary Multiscale Numerical Investigation
,”
Appl. Sci.
,
9
(
19
), p.
4143
.10.3390/app9194143
You do not currently have access to this content.