Abstract

The mechanisms underlying chronic pain development following musculoskeletal trauma are complex and multifactorial. In their search, some researchers are turning to the subchondral bone as a potential contributor to pain due to its vascularity, using a depth-specific imaging technique. However, this technique has been mainly used in the knee. We propose the use of a quantitative computed tomography (QCT) depth-specific analysis to measure subchondral bone following wrist trauma. Ten participants (n = 5 post-trauma; n = 5 healthy) underwent bilateral computed tomography scans of their wrist accompanied by a calibration phantom with known densities. Average subchondral volumetric bone mineral density (vBMD) was studied at three depths from the subchondral surface (0–2.5, 2.5–5, 5–7.5 mm) according to radial articular surface contact in both wrists of each participant. Percentage differences and Cohen's d effect sizes were calculated to analyze bilateral vBMD and vBMD differences between groups. This image-based tool demonstrated subject-specific, depth-specific, and joint-specific measures of vBMD within the wrist. This methodology highlighted the differences between depth-specific vBMD in healthy people and people who have experienced wrist trauma. Overall, the healthy cohort demonstrated higher vBMD across all three depths and both articular surfaces. This imaging technique further distinguished between subchondral cortical and trabecular bones, wherein clinical implications can be drawn from these distinctions in future work. Our study therefore supports the utility of a QCT imaging technique in detecting differences in depth-specific vBMD in the wrist.

References

1.
Zhao
,
K.
,
Breighner
,
R.
,
Holmes
,
D.
,
Leng
,
S.
,
McCollough
,
C.
, and
An
,
K. N.
,
2015
, “
A Technique for Quantifying Wrist Motion Using Four-Dimensional Computed Tomography: Approach and Validation
,”
ASME J. Biomech. Eng.
,
137
(
7
), p. 074501.10.1115/1.4030405
2.
Shores
,
J. T.
,
Demehri
,
S.
, and
Chhabra
,
A.
,
2013
, “
4 Dimensional” CT Imaging in the Assessment of Wrist Biomechanics Before and After Surgical Repair
,”
Eplasty
,
13
, p.
e9
.https://pubmed.ncbi.nlm.nih.gov/23573338/
3.
Bruno
,
F.
,
Arrigoni
,
F.
,
Palumbo
,
P.
,
Natella
,
R.
,
Maggialetti
,
N.
,
Reginelli
,
A.
,
Splendiani
,
A.
,
Di Cesare
,
E.
,
Bazzocchi
,
A.
,
Guglielmi
,
G.
,
Masciocchi
,
C.
, and
Barile
,
A.
,
2019
, “
The Acutely Injured Wrist
,”
Radiol. Clin. North Am.
,
57
(
5
), pp.
943
955
.10.1016/j.rcl.2019.05.003
4.
Garcia-Elias
,
M.
, and
Folgar
,
M. Á. V.
,
2006
, “
The Management of Wrist Injuries: An International Perspective
,”
Injury
,
37
(
11
), pp.
1049
1056
.10.1016/j.injury.2006.07.025
5.
MacDermid
,
J. C.
,
Roth
,
J. H.
, and
Richards
,
R. S.
,
2003
, “
Pain and Disability Reported in the Year Following a Distal Radius Fracture: A Cohort Study
,”
BMC Musculoskelet. Disord.
,
4
(
1
), pp.
1
13
.10.1186/1471-2474-4-24
6.
Padmore
,
C.
,
Stoesser
,
H.
,
Langohr
,
G. D.
,
Johnson
,
J.
, and
Suh
,
N.
,
2019
, “
Carpal Kinematics Following Sequential Scapholunate Ligament Sectioning
,”
J. Wrist Surg.
,
08
(
2
), pp.
124
131
.10.1055/s-0038-1676865
7.
Wang
,
P.
,
Stepan
,
J. G.
,
An
,
T.
, and
Osei
,
D. A.
,
2017
, “
Equivalent Clinical Outcomes Following Favored Treatments of Chronic Scapholunate Ligament Tear
,”
Hss J.
,
13
(
2
), pp.
186
193
.10.1007/s11420-016-9525-5
8.
Shah
,
C. M.
, and
Stern
,
P. J.
,
2013
, “
Scapholunate Advanced Collapse (SLAC) and Scaphoid Nonunion Advanced Collapse (SNAC) Wrist Arthritis
,”
Curr. Rev. Musculoskelet. Med.
,
6
(
1
), pp.
9
17
.10.1007/s12178-012-9149-4
9.
Murphy
,
B. D.
,
Nagarajan
,
M.
,
Novak
,
C. B.
,
Roy
,
M.
, and
McCabe
,
S. J.
,
2020
, “
The Epidemiology of Scapholunate Advanced Collapse
,”
Hand
,
15
(
1
), pp.
23
26
.10.1177/1558944718788672
10.
O'Meeghan
,
C. J.
,
Stuart
,
W.
,
Mamo
,
V.
,
Stanley
,
J. K.
, and
Trail
,
I. A.
,
2003
, “
The Natural History of an Untreated Isolated Scapholunate Interosseus Ligament Injury
,”
J. Hand Surg. Am.
,
28
(
4
), pp.
307
310
.10.1016/S0266-7681(03)00079-2
11.
Mehta
,
S. P.
,
Macdermid
,
J. C.
,
Richardson
,
J.
,
MacIntyre
,
N. J.
, and
Grewal
,
R.
,
2015
, “
Baseline Pain Intensity is a Predictor of Chronic Pain in Individuals With Distal Radius Fracture
,”
J. Orthop. Sports Phys. Ther.
,
45
(
2
), pp.
119
127
.10.2519/jospt.2015.5129
12.
Ospina
,
M.
, and
Harstall
,
C.
,
2002
, “
Prevalence of Chronic Pain: An Overview
,” Health Technology Assessment Alberta Heritage Foundation for Medical Research, Edmonton, AB.
13.
Elliott
,
A. M.
,
Smith
,
B. H.
,
Penny
,
K. I.
,
Smith
,
W. C.
, and
Chambers
,
W. A.
,
1999
, “
The Epidemiology of Chronic Pain in the Community
,”
Lancet
,
354
(
9186
), pp.
1248
1252
.10.1016/S0140-6736(99)03057-3
14.
Cimmino
,
M. A.
,
Ferrone
,
C.
, and
Cutolo
,
M.
,
2011
, “
Epidemiology of Chronic Musculoskeletal Pain
,”
Best Pract. Res. Clin. Rheumatol.
,
25
(
2
), pp.
173
183
.10.1016/j.berh.2010.01.012
15.
Lalone
,
E. A.
,
MacDermid
,
J.
,
King
,
G.
, and
Grewal
,
R.
,
2021
, “
The Effect of Distal Radius Fractures on 3-Dimensional Joint Congruency
,”
J. Hand Surg. Am.
,
46
(
1
), pp.
66.e1
66.e10
.10.1016/j.jhsa.2020.05.027
16.
Lalone
,
E. A.
,
McDonald
,
C. P.
,
Ferreira
,
L. M.
,
Peters
,
T. M.
,
King
,
G. W.
, and
Johnson
,
J. A.
,
2013
, “
Development of an Image-Based Technique to Examine Joint Congruency at the Elbow
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
3
), pp.
280
290
.10.1080/10255842.2011.617006
17.
Lalone
,
E.
,
MacDermid
,
J.
,
Grewal
,
R.
, and
King
,
G.
,
2017
, “
Patient Reported Pain and Disability Following a Distal Radius Fracture: A Prospective Study
,”
Open Orthop. J.
,
11
(
1
), pp.
589
599
.10.2174/1874325001711010589
18.
Crisco
,
J. J.
,
Moore
,
D. C.
,
Marai
,
G. E.
,
Laidlaw
,
D.
,
Akelman
,
E.
,
Weiss
,
A. P.
, and
Wolfe
,
S. W.
,
2007
, “
Effects of Distal Radius Malunion on Distal Radioulnar Joint Mechanics-An In Vivo Study
,”
J. Orthop. Res.
,
25
(
4
), pp.
547
555
.10.1002/jor.20322
19.
Rainbow
,
M. J.
,
Wolff
,
A. L.
,
Crisco
,
J. J.
, and
Wolfe
,
S. W.
,
2016
, “
Functional Kinematics of the Wrist
,”
J. Hand Surg. Eur. Vol.
,
41
(
1
), pp.
7
21
.10.1177/1753193415616939
20.
Laulan
,
J.
,
Marteau
,
E.
, and
Bacle
,
G.
,
2015
, “
Wrist Osteoarthritis
,”
Orthop. Traumatol. Surg. Res.
,
101
(
1
), pp.
S1
S9
.10.1016/j.otsr.2014.06.025
21.
Grewal
,
R.
, and
MacDermid
,
J. C.
,
2007
, “
The Risk of Adverse Outcomes in Extra-Articular Distal Radius Fractures is Increased With Malalignment in Patients of All Ages but Mitigated in Older Patients
,”
J. Hand Surg. Am.
,
32
(
7
), pp.
962
970
.10.1016/j.jhsa.2007.05.009
22.
Madry
,
H.
,
van Dijk
,
C. N.
, and
Mueller-Gerbl
,
M.
,
2010
, “
The Basic Science of the Subchondral Bone
,”
Knee Surg., Sport Traumatol. Arthrosc.
,
18
(
4
), pp.
419
433
.10.1007/s00167-010-1054-z
23.
Burnett
,
W.
,
Kontulainen
,
S.
,
McLennan
,
C.
,
Hazel
,
D.
,
Talmo
,
C.
,
Hunter
,
D.
,
Wilson
,
D.
, and
Johnston
,
J.
,
2016
, “
Patella Bone Density is Lower in Knee Osteoarthritis Patients Experiencing Moderate-to-Severe Pain at Rest
,”
J. Musculoskelet. Neuronal. Interact.
,
16
(
1
), pp.
33
39
.https://pubmed.ncbi.nlm.nih.gov/26944821/#:~:text=Conclusions%3A%20In%20OA%20patients%20with,native%20bone%20prior%20to%20T KR
24.
Burnett
,
W. D.
,
Kontulainen
,
S. A.
,
McLennan
,
C. E.
,
Hazel
,
D.
,
Talmo
,
C.
,
Hunter
,
D.
,
Wilson
,
D.
, and
Johnston
,
J.
,
2017
, “
Proximal Tibial Trabecular Bone Mineral Density is Related to Pain in Patients With Osteoarthritis
,”
Arthritis Res. Ther.
,
19
(
1
), pp.
1
9
.10.1186/s13075-017-1415-9
25.
Johnston
,
J. D.
,
2010
, “
Development A Novel Non-Invasive Imaging Technique Characterizing Subchondral Bone Density Stiffness
,”
Doctoral thesis
, University of British Columbia, Vancouver, BC, Canada.10.14288/1.0071564
26.
Hoogbergen
,
M. M.
,
Schots
,
J. M. P.
,
Niessen
,
W. J.
,
Schuurman
,
A. H.
,
Spauwen
,
P. H. M.
, and
Kauer
,
J. M. G.
,
2008
, “
Subchondral Bone Mineral Density Patterns Representing the Loading History of the Wrist Joint After a Proximal Row Carpectomy
,”
Eur. J. Plast. Surg.
,
31
(
3
), pp.
101
107
.10.1007/s00238-008-0230-6
27.
Burnett
,
W. D.
,
Kontulainen
,
S. A.
,
McLennan
,
C. E.
,
Hunter
,
D. J.
,
Wilson
,
D. R.
, and
Johnston
,
J. D.
,
2014
, “
Regional Depth-Specific Subchondral Bone Density Measures in Osteoarthritic and Normal Patellae: In Vivo Precision and Preliminary Comparisons
,”
Osteoporos. Int.
,
25
(
3
), pp.
1107
1114
.10.1007/s00198-013-2568-2
28.
Kroker
,
A.
,
Besler
,
B. A.
,
Bhatla
,
J. L.
,
Shtil
,
M.
,
Salat
,
P.
,
Mohtadi
,
N.
,
Walker
,
R. E.
,
Manske
,
S. L.
, and
Boyd
,
S. K.
,
2019
, “
Longitudinal Effects of Acute Anterior Cruciate Ligament Tears on Peri‐Articular Bone in Human Knees Within the First Year of Injury
,”
J. Orthop. Res.
,
37
(
11
), pp.
2325
2336
.10.1002/jor.24410
29.
Kroker
,
A.
,
Zhu
,
Y.
,
Manske
,
S. L.
,
Barber
,
R.
,
Mohtadi
,
N.
, and
Boyd
,
S. K.
,
2017
, “
Quantitative In Vivo Assessment of Bone Microarchitecture in the Human Knee Using HR-pQCT
,”
Bone
,
97
, pp.
43
48
.10.1016/j.bone.2016.12.015
30.
MacDermid
,
J. C.
,
1996
, “
Development of a Scale for Patient Rating of Wrist Pain and Disability
,”
J. Hand Ther.
,
9
(
2
), pp.
178
183
.10.1016/S0894-1130(96)80076-7
31.
Robinson
,
S. M.
, “
4DCT to Examine Carpal Motion
,” Electronic theses and dissertations repository, Western University, London, ON, Canada, accessed Feb. 7, 2022, https://ir.lib.uwo.ca/etd/7801/
32.
Robinson
,
S.
,
Straatman
,
L.
,
Lee
,
T. Y.
,
Suh
,
N.
, and
Lalone
,
E.
,
2021
, “
Evaluation of Four-Dimensional Computed Tomography as a Technique for Quantifying Carpal Motion
,”
ASME J. Biomech. Eng.
,
143
(
6
), p. 061011.10.1115/1.4050129
33.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropr. Med.
,
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
34.
Apergis
,
E.
,
Darmanis
,
S.
,
Theodoratos
,
G.
, and
Maris
,
J.
,
2002
, “
Subchondral Bone Mineral Density Patterns Representing the Loading History of the Wrist Joint
,”
J. Hand Surg. Am.
,
27
(
2
), pp.
150
154
.10.1054/jhsb.2001.0714
35.
Burghardt
,
A. J.
,
Buie
,
H. R.
,
Laib
,
A.
,
Majumdar
,
S.
, and
Boyd
,
S. K.
,
2010
, “
Reproducibility of Direct Quantitative Measures of Cortical Bone Microarchitecture of the Distal Radius and Tibia by HR-pQCT
,”
Bone
,
47
(
3
), pp.
519
528
.10.1016/j.bone.2010.05.034
36.
Johnston
,
J. D.
,
Masri
,
B. A.
, and
Wilson
,
D. R.
,
2009
, “
Computed Tomography Topographic Mapping of Subchondral Density (CT-TOMASD) in Osteoarthritic and Normal Knees: Methodological Development and Preliminary Findings
,”
Osteoarthr. Cartil.
,
17
(
10
), pp.
1319
1326
.10.1016/j.joca.2009.04.013
37.
Kontulainen
,
S.
,
Liu
,
D.
,
Manske
,
S.
,
Jamieson
,
M.
,
Sievänen
,
H.
, and
McKay
,
H.
,
2007
, “
Analyzing Cortical Bone Cross-Sectional Geometry by Peripheral QCT: Comparison With Bone Histomorphometry
,”
J. Clin. Densitom.
,
10
(
1
), pp.
86
92
.10.1016/j.jocd.2006.07.007
38.
Meyer
,
U.
,
De Jong
,
J. J.
,
Bours
,
S. G.
,
Keszei
,
A. P.
,
Arts
,
J. J.
,
Brink
,
P. G.
,
Menheere
,
P.
,
Van Geel
,
T.
,
Van Rietbergen
,
B.
,
Van Den Bergh
,
J.
,
Geusens
,
R. P.
, and
Willems
,
P. C.
,
2014
, “
Early Changes in Bone Density, Microarchitecture, Bone Resorption, and Inflammation Predict the Clinical Outcome 12 Weeks After Conservatively Treated Distal Radius Fractures: An Exploratory Study
,”
J. Bone Miner. Res.
,
29
(
9
), pp.
2065
2073
.10.1002/jbmr.2225
You do not currently have access to this content.