Abstract

Bileaflet mechanical heart valves (BMHV) are widely implanted to replace diseased heart valves. Despite many improvements in design, these valves still suffer from various complications, such as valve dysfunction, tissue overgrowth, hemolysis, and thromboembolism. Thrombosis and thromboembolism are believed to be initiated by platelet activation due to contact with foreign surfaces and nonphysiological flow patterns. The implantation of the valve causes nonphysiological patterns of vortex shedding behind the leaflets. This study signifies the importance of vorticity in platelet activation and aggregation in BMHV implants. A two-phase model with the first Eulerian phase for blood and the second discrete phase for platelets is used here. The generalized cross model of viscosity has been used to simulate the non-Newtonian viscosity of blood. A fluid–structure-interaction model has been used to simulate the motion of leaflets. This study has also estimated the platelet activation state (PAS), which is the mathematical estimation of the degree of activation of platelets due to flow-induced shear stresses that cause thrombus formation. The regions in the fluid domain with a higher vorticity field have been found to contain platelets with relatively higher PAS than regions with relatively lower vorticity fields. Also, this study has quantitatively reported the effect of vorticity on platelet aggregation. Platelet densities in fluid areas with higher vorticity are higher than densities in fluid areas with lower vorticity, indicating that highly activated platelets aggregate in areas with stronger vorticity.

References

1.
Suri
,
R. M.
, and
Schaff
,
H. V.
,
2013
, “
Selection of Aortic Valve Prostheses: Contemporary Reappraisal of Mechanical Versus Biologic Valve Substitutes
,”
Circulation
,
128
(
12
), pp.
1372
1380
.10.1161/CIRCULATIONAHA.113.001681
2.
Eloot
,
S.
,
2004
,
Experimental and Numerical Modeling of Dialysis
,
Faculty of Engineering, Ghent University
, Ghent, Belgium.
3.
Tang
,
G. H. L.
,
Rao
,
V.
,
Siu
,
S.
, and
Butany
,
J.
,
2005
, “
Thrombosis of Mechanical Mitral Valve Prosthesis
,”
J. Card. Surg.
,
20
(
5
), pp.
481
486
.10.1111/j.1540-8191.2005.200474.x
4.
Blackshear
,
P. L. J.
,
Dorman
,
F. D.
, and
Steinbach
,
J. H.
,
1965
, “
Some Mechanical Effects That Influence Hemolysis
,”
Asaio J.
,
11
(
1
), pp.
112
117
.10.1097/00002480-196504000-00022
5.
Ellis
,
J. T.
,
Travis
,
B. R.
, and
Yoganathan
,
A. P.
,
2000
, “
An In Vitro Study of the Hinge and Near-Field Forward Flow Dynamics of the St. Jude Medical® RegentTM Bileaflet Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
28
(
5
), pp.
524
532
.10.1114/1.297
6.
Manning
,
K. B.
,
Kini
,
V.
,
Fontaine
,
A. A.
,
Deutsch
,
S.
, and
Tarbell
,
J. M.
,
2003
, “
Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry
,”
Artif. Organs
,
27
(
9
), pp.
840
846
.10.1046/j.1525-1594.2003.07194.x
7.
Darwish
,
A.
,
Di Labbio
,
G.
,
Saleh
,
W.
,
Smadi
,
O.
, and
Kadem
,
L.
,
2019
, “
Experimental Investigation of the Flow Downstream of a Dysfunctional Bileaflet Mechanical Aortic Valve
,”
Artif. Organs
,
43
(
10
), pp.
E249
E263
.10.1111/aor.13483
8.
Ma
,
W.-G.
,
Hou
,
B.
,
Abdurusul
,
A.
,
Gong
,
D.-X.
,
Tang
,
Y.
,
Chang
,
Q.
,
Xu
,
J.-P.
, and
Sun
,
H.-S.
,
2015
, “
Dysfunction of Mechanical Heart Valve Prosthesis: Experience With Surgical Management in 48 Patients
,”
J. Thorac. Dis.
,
7
(
12
), pp.
2321
2329
.http://www.ncbi.nlm.nih.gov/pubmed/26793354
9.
Ge
,
L.
,
Leo
,
H.-L.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2005
, “
Flow in a Mechanical Bileaflet Heart Valve at Laminar and Near-Peak Systole Flow Rates: CFD Simulations and Experiments
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
782
797
.10.1115/1.1993665
10.
Dasi
,
L. P.
,
Ge
,
L.
,
Simon
,
A. H.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
P. A.
,
2007
, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
,
19
(
6
), p. 067105.10.1063/1.2743261
11.
Yagi
,
T.
,
Yang
,
W.
, and
Umezu
,
M.
,
2011
, “
Effect of Bileaflet Valve Orientation on the 3D Flow Dynamics in the Sinus of Valsalva
,”
J. Biomech. Sci. Eng.
,
6
(
2
), pp.
64
78
.10.1299/jbse.6.64
12.
Choi
,
C. R.
,
Kim
,
C. N.
,
Kwon
,
Y. J.
, and
Lee
,
J. W.
,
2003
, “
Pulsatile Blood Flows Through a Bileaflet Mechanical Heart Valve With Different Approach Methods of Numerical Analysis; Pulsatile Flows With Fixed Leaflets and Interacted With Moving Leaflets
,”
KSME Int. J.
,
17
(
7
), pp.
1073
1082
.10.1007/BF02982992
13.
Cheng
,
R.
,
Lai
,
Y. G.
, and
Chandran
,
K. B.
,
2004
, “
Three-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1471
1483
.10.1114/B:ABME.0000049032.51742.10
14.
Nobili
,
M.
,
Passoni
,
G.
, and
Redalli
,
A.
,
2007
, “
Two Fluid-Structure Approaches for 3D Simulation of St. Jude Medical Bileaflet Valve Opening
,”
J. Appl. Biomater. Biomech.
,
5
(
1
), pp.
49
59
.http://www.ncbi.nlm.nih.gov/pubmed/20799197
15.
Redaelli
,
A.
,
Bothorel
,
H.
,
Votta
,
E.
,
Soncini
,
M.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
Balducci
,
A.
, and
Grigioni
,
M.
,
2004
, “
3-D Simulation of the St. Jude Medical Bileaflet Valve Opening Process: Fluid-Structure Interaction Study and Experimental Validation
,”
J. Heart Valve Dis.
,
13
(
5
), pp.
804
813
.http://www.ncbi.nlm.nih.gov/pubmed/15473484
16.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2008
, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
,
227
(
16
), pp.
7587
7620
.10.1016/j.jcp.2008.04.028
17.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2010
, “
High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
326
344
.10.1007/s10439-009-9807-x
18.
Yeleswarapu
,
K. K.
,
Antaki
,
J. F.
,
Kameneva
,
M. V.
, and
Rajagopal
,
K. R.
,
1995
, “
A Mathematical Model for Shear-Induced Hemolysis
,”
Artif. Organs
,
19
(
7
), pp.
576
582
.10.1111/j.1525-1594.1995.tb02384.x
19.
Yeh
,
H.
,
Grecov
,
D.
, and
Karri
,
S.
,
2014
, “
Computational Modelling of Bileaflet Mechanical Valves Using Fluid-Structure Interaction Approach
,”
J. Med. Biol. Eng.
,
34
(
5
), pp.
482
486
.10.5405/jmbe.1699
20.
De Tullio
,
M. D.
,
Afferrante
,
L.
,
Demelio
,
G.
,
Pascazio
,
G.
, and
Verzicco
,
R.
,
2011
, “
Fluid-Structure Interaction of Deformable Aortic Prostheses With a Bileaflet Mechanical Valve
,”
J. Biomech.
,
44
(
9
), pp.
1684
1690
.10.1016/j.jbiomech.2011.03.036
21.
Folie
,
B. J.
, and
McIntire
,
L. V.
,
1989
, “
Mathematical Analysis of Mural Thrombogenesis. Concentration Profiles of Platelet-Activating Agents and Effects of Viscous Shear Flow
,”
Biophys. J.
,
56
(
6
), pp.
1121
1141
.10.1016/S0006-3495(89)82760-2
22.
Horstkotte
,
D.
,
Körfer
,
R.
,
Budde
,
T.
,
Haerten
,
K.
,
Schulte
,
H. D.
,
Bircks
,
W.
, and
Loogen
,
F.
,
1983
, “
[Late Complications Following Björk-Shiley and St. Jude Medical Heart Valve Replacement]
,”
Z. Kardiol.
,
72
(
5
), pp.
251
261
.http://www.ncbi.nlm.nih.gov/pubmed/6880335
23.
Figliola
,
R. S.
, and
Mueller
,
T. J.
,
1981
, “
On the Hemolytic and Thrombogenic Potential of Occluder Prosthetic Heart Valves From In-Vitro Measurements
,”
ASME J. Biomech. Eng.
,
103
(
2
), pp.
83
90
.10.1115/1.3138265
24.
Sutera
,
S. P.
,
Nowak
,
M. D.
,
Joist
,
J. H.
,
Zeffren
,
D. J.
, and
Bauman
,
J. E.
,
1988
, “
A Programmable, Computer-Controlled Cone-Plate Viscometer for the Application of Pulsatile Shear Stress to Platelet Suspensions
,”
Biorheology
,
25
(
3
), pp.
449
459
.10.3233/BIR-1988-25306
25.
Purvis
,
N. B. J.
, and
Giorgio
,
T. D.
,
1991
, “
The Effects of Elongational Stress Exposure on the Activation and Aggregation of Blood Platelets
,”
Biorheology
,
28
(
5
), pp.
355
367
.10.3233/BIR-1991-28501
26.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Nobili
,
M.
,
Massai
,
D.
,
Montevecchi
,
F. M.
,
Bluestein
,
D.
, and
Redaelli
,
A.
,
2009
, “
Blood Damage Safety of Prosthetic Heart Valves. Shear-Induced Platelet Activation and Local Flow Dynamics: A Fluid–Structure Interaction Approach
,”
J. Biomech.
,
42
(
12
), pp.
1952
1960
.10.1016/j.jbiomech.2009.05.014
27.
Yun
,
B. M.
,
Aidun
,
C. K.
, and
Yoganathan
,
A. P.
,
2014
, “
Blood Damage Through a Bileaflet Mechanical Heart Valve: A Quantitative Computational Study Using a Multiscale Suspension Flow Solver
,”
ASME J. Biomech. Eng.
,
136
(
10
), p.
101009
.10.1115/1.4028105
28.
Hedayat, M., and Borazjani, I.
,
2019
, “
Comparison of Platelet Activation Through Hinge Vs Bulk Flow in Bileaflet Mechanical Heart Valves
,”
J. Biomech.
,
83
, pp.
280
290
.10.1016/j.jbiomech.2018.12.003
29.
Bluestein
,
D.
,
Li
,
Y. M.
, and
Krukenkamp
,
I. B.
,
2002
, “
Free Emboli Formation in the Wake of Bi-Leaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
,
35
(
12
), pp.
1533
1540
.10.1016/s0021-9290(02)00093-3
30.
Yin
,
W.
,
Alemu
,
Y.
,
Affeld
,
K.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2004
, “
Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves
,”
Ann. Biomed. Eng.
,
32
(
8
), pp.
1058
1066
.10.1114/B:ABME.0000036642.21895.3f
31.
Shahriari
,
S.
,
Maleki
,
H.
,
Hassan
,
I.
, and
Kadem
,
L.
,
2012
, “
Evaluation of Shear Stress Accumulation on Blood Components in Normal and Dysfunctional Bileaflet Mechanical Heart Valves Using Smoothed Particle Hydrodynamics
,”
J. Biomech.
,
45
(
15
), pp.
2637
2644
.10.1016/j.jbiomech.2012.08.009
32.
Ramstack
,
J. M.
,
Zuckerman
,
L.
, and
Mockros
,
L. F.
,
1979
, “
Shear-Induced Activation of Platelets
,”
J. Biomech.
,
12
(
2
), pp.
113
125
.10.1016/0021-9290(79)90150-7
33.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow‐Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
34.
Nobili
,
M.
,
Morbiducci
,
U.
,
Ponzini
,
R.
,
Del Gaudio
,
C.
,
Balducci
,
A.
,
Grigioni
,
M.
,
Maria Montevecchi
,
F.
, and
Redaelli
,
A.
,
2008
, “
Numerical Simulation of the Dynamics of a Bileaflet Prosthetic Heart Valve Using a Fluid-Structure Interaction Approach
,”
J. Biomech.
,
41
(
11
), pp.
2539
2550
.10.1016/j.jbiomech.2008.05.004
35.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1279
1296
.10.1007/s10439-013-0758-x
36.
Soares
,
J. S.
,
Sheriff
,
J.
, and
Bluestein
,
D.
,
2013
, “
A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1127
1141
.10.1007/s10237-013-0469-0
37.
Bluestein
,
D.
,
Einav, S., and Hwang, N. H. C.
,
1994
, “
A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis
,”
J. Biomech.
,
27
(
11
), pp.
1369
1378
.10.1016/0021-9290(94)90046-9
38.
De Tullio
,
M. D.
,
Cristallo
,
A.
,
Balaras
,
E.
, and
Verzicco
,
R.
,
2009
, “
Direct Numerical Simulation of the Pulsatile Flow Through an Aortic Bileaflet Mechanical Heart Valve
,”
J. Fluid Mech.
,
622
, pp.
259
290
.10.1017/S0022112008005156
39.
Cerroni
,
G.
,
2006
,
Studio Sperimentale Del Campo Fluidodinamico a Valle Di Una Valvola Cardiaca Artificiale e in Un Dispositivo Di Circolazione Assistita Mediante Tecnica PIV
,
Universita' Degli Studi di Roma, La Sapienza, Facolta' di Ingegneria
, Metropolitan City of Rome, Italy.
40.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
2
.10.1115/1.3242537
41.
Roy
,
C. J.
,
2003
, “
Grid Convergence Error Analysis for Mixed-Order Numerical Schemes
,”
AIAA J.
,
41
(
4
), pp.
595
604
.10.2514/2.2013
42.
Bodnár
,
T.
,
Sequeira
,
A.
, and
Prosi
,
M.
,
2011
, “
On the Shear-Thinning and Viscoelastic Effects of Blood Flow Under Various Flow Rates
,”
Appl. Math. Comput.
,
217
(
11
), pp.
5055
5067
.10.1016/j.amc.2010.07.054
43.
Le Tallec
,
P.
, and
Mouro
,
J.
,
2001
, “
Fluid Structure Interaction With Large Structural Displacements
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
24–25
), pp.
3039
3067
.10.1016/S0045-7825(00)00381-9
44.
Mohammadi
,
H.
,
Ahmadian
,
M. T.
, and
Wan
,
W. K.
,
2006
, “
Time-Dependent Analysis of Leaflets in Mechanical Aortic Bileaflet Heart Valves in Closing Phase Using the Finite Strip Method
,”
Med. Eng. Phys.
,
28
(
2
), pp.
122
133
.10.1016/j.medengphy.2005.03.013
45.
Oesterlé
,
B.
, and
Dinh
,
T. B.
,
1998
, “
Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers
,”
Exp. Fluids
,
25
(
1
), pp.
16
22
.10.1007/s003480050203
46.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray Level Histograms
,”
IEEE Trans. Syst. Man. Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
47.
Duda
,
R. O.
, and
Hart
,
P. E.
,
2006
,
Pattern Classification
,
Wiley
, Hoboken, NJ.
48.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.10.1046/j.1525-1594.2001.025005341.x
49.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2008
, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
64
72
.10.1097/MAT.0b013e31815d6898
50.
Kleine
,
P.
,
Perthel
,
M.
,
Nygaard
,
H.
,
Hansen
,
S. B.
,
Paulsen
,
P. K.
,
Riis
,
C.
, and
Laas
,
J.
,
1998
, “
Medtronic Hall Versus St. Jude Medical Mechanical Aortic Valve: Downstream Turbulences With Respect to Rotation in Pigs
,”
J. Heart Valve Dis.
,
7
(
5
), pp.
548
555
.http://www.ncbi.nlm.nih.gov/pubmed/9793855
51.
AlMomani
,
T.
,
Udaykumar
,
H. S.
,
Marshall
,
J. S.
, and
Chandran
,
K. B.
,
2008
, “
Micro-Scale Dynamic Simulation of Erythrocyte–Platelet Interaction in Blood Flow
,”
Ann. Biomed. Eng.
,
36
(
6
), pp.
905
920
.10.1007/s10439-008-9478-z
You do not currently have access to this content.