Abstract

For children born with a single functional ventricle, the Fontan operation bypasses the right ventricle by forming a four-way total cavopulmonary connection and adapts the existing ventricle for the systemic circulation. However, upon reaching adulthood, many Fontan patients exhibit low cardiac output and elevated venous pressure, eventually requiring a heart transplantation. Despite efforts in developing a new device or using an existing device for failing Fontan support, there is still no Food and Drug Administration-approved device for subpulmonary support. Penn State University is developing a hydrodynamically levitated Fontan circulatory assist device (FCAD) for bridge-to-transplant or destination therapy. The hemodynamics within the FCAD, at both steady and patient averaged pulsatile conditions for three physiological pump operating conditions, were quantified using particle image velocimetry (PIV) to determine the velocity magnitudes and Reynolds normal and shear stresses within the device. Data were acquired at three planes (0 mm and ±25% of the radius) for the inferior and superior vena cavae inlets and the pulmonary artery outlet. The inlets had a blunt velocity profile that became skewed toward the collecting volute as fluid approached the rotor. At the outlet, regardless of the flow condition, a high-velocity jet exited the volute and moved downstream in a helical pattern. Turbulent stresses observed at the volute exit were influenced by the rotor's rotation. Regardless of inlet conditions, the pump demonstrated advantageous behavior for clinical use with a predictable flow field and a low risk of platelet adhesion and hemolysis based on calculated wall shear rates and turbulent stresses, respectively.

References

1.
Akintoye
,
E.
,
Miranda
,
W. R.
,
Veldtman
,
G. R.
,
Connolly
,
H. M.
, and
Egbe
,
A. C.
,
2019
, “
National Trends in Fontan Operation and in-Hospital Outcomes in the USA
,”
Heart
,
105
(
9
), pp.
708
714
.10.1136/heartjnl-2018-313680
2.
Coats
,
L.
,
O'Connor
,
S.
,
Wren
,
C.
, and
O'Sullivan
,
J.
,
2014
, “
The Single-Ventricle Patient Population: A Current and Future Concern a Population-Based Study in the North of England
,”
Heart
,
100
(
17
), pp.
1348
1353
.10.1136/heartjnl-2013-305336
3.
Deal
,
B. J.
, and
Jacobs
,
M. L.
,
2012
, “
Management of the Failing Fontan Circulation
,”
Heart
,
98
(
14
), pp.
1098
1104
.10.1136/heartjnl-2011-301133
4.
Gewillig
,
M.
,
2005
, “
The Fontan Circulation
,”
Heart
,
91
(
6
), pp.
839
846
.10.1136/hrt.2004.051789
5.
Fredenburg
,
T. B.
,
Johnson
,
T. R.
, and
Cohen
,
M. D.
,
2011
, “
The Fontan Procedure: Anatomy, Complications, and Manifestations of Failure
,”
Radiographics
,
31
(
2
), pp.
453
463
.10.1148/rg.312105027
6.
Gewillig
,
M.
, and
Brown
,
S. C.
,
2016
, “
The Fontan Circulation After 45 Years: Update in Physiology
,”
Heart
,
102
(
14
), pp.
1081
1086
.10.1136/heartjnl-2015-307467
7.
Kverneland
,
L. S.
,
Kramer
,
P.
, and
Ovroutski
,
S.
,
2018
, “
Five Decades of the Fontan Operation: A Systematic Review of International Reports on Outcomes After Univentricular Palliation
,”
Congenital Heart Disease
,
13
(
2
), pp.
181
193
.10.1111/chd.12570
8.
Lacour-Gayet
,
F. G.
,
Lanning
,
C. J.
,
Stoica
,
S.
,
Wang
,
R.
,
Rech
,
B. A.
,
Goldberg
,
S.
, and
Shandas
,
R.
,
2009
, “
An Artificial Right Ventricle for Failing Fontan: In Vitro and Computational Study
,”
Ann. Thorac. Surg.
,
88
(
1
), pp.
170
176
.10.1016/j.athoracsur.2009.03.091
9.
Rodefeld
,
M. D.
,
Coats
,
B.
,
Fisher
,
T.
,
Giridharan
,
G. A.
,
Chen
,
J.
,
Brown
,
J. W.
, and
Frankel
,
S. H.
,
2010
, “
Cavopulmonary Assist for the Univentricular Fontan Circulation: Von Kármán Viscous Impeller Pump
,”
J. Thorac. Cardiovasc. Surg.
,
140
(
3
), pp.
529
536
.10.1016/j.jtcvs.2010.04.037
10.
Throckmorton
,
A. L.
,
Kapadia
,
J. Y.
,
Chopski
,
S. G.
,
Bhavsar
,
S. S.
,
Moskowitz
,
W. B.
,
Gullquist
,
S. D.
,
Gangemi
,
J. J.
,
Haggerty
,
C. M.
, and
Yoganathan
,
A. P.
,
2011
, “
Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to Mechanically Support Fontan Patients
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
324
336
.10.1007/s10439-010-0159-3
11.
Granegger
,
M.
,
Thamsen
,
B.
,
Hubmann
,
E. J.
,
Choi
,
Y.
,
Beck
,
D.
,
Buechel
,
E. V.
,
Voutat
,
M.
,
Schweiger
,
M.
,
Meboldt
,
M.
, and
Hübler
,
M.
,
2019
, “
A Long-Term Mechanical Cavopulmonary Support Device for Patients With Fontan Circulation
,”
Medical Eng. Phys.
,
70
, pp.
9
18
.10.1016/j.medengphy.2019.06.017
12.
Derk
,
G.
,
Laks
,
H.
,
Biniwale
,
R.
,
Patel
,
S.
,
De LaCruz
,
K.
,
Mazor
,
E.
,
Williams
,
R.
,
Valdovinos
,
J.
,
Levi
,
D. S.
,
Reardon
,
L.
, and
Aboulhosn
,
J.
,.
2014
, “
Novel Techniques of Mechanical Circulatory Support for the Right Heart and Fontan Circulation
,”
Int. J. Cardiol.
,
176
(
3
), pp.
828
832
.10.1016/j.ijcard.2014.08.012
13.
Haggerty
,
C. M.
,
Fynn-Thompson
,
F.
,
McElhinney
,
D. B.
,
Valente
,
A. M.
,
Saikrishnan
,
N.
,
Del Nido
,
P. J.
, and
Yoganathan
,
A. P.
,
2012
, “
Experimental and Numeric Investigation of Impella Pumps as Cavopulmonary Assistance for a Failing Fontan
,”
J. Thorac. Cardiovasc. Surg.
,
144
(
3
), pp.
563
569
.10.1016/j.jtcvs.2011.12.063
14.
Halaweish
,
I.
,
Ohye
,
R. G.
, and
Si
,
M. S.
,
2015
, “
Berlin Heart Ventricular Assist Device as a Long-Term Bridge to Transplantation in a Fontan Patient With Failing Single Ventricle
,”
Pediatr. Transplant.
,
19
(
8
), pp.
E193
E195
.10.1111/petr.12607
15.
Hildebrand
,
S.
,
Groß-Hardt
,
S.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
, and
Jansen
,
S. V.
,
2021
, “
In-Vitro Performance of a Single-Chambered Total Artificial Heart in a Fontan Circulation
,”
J. Artif. Organs
, epub, p.
0123456789
.10.1007/s10047-021-01273-5
16.
Lorts
,
A.
,
Villa
,
C.
,
Riggs
,
K. W.
,
Broderick
,
J.
, and
Morales
,
D. L. S.
,
2018
, “
First Use of HeartMate 3 in a Failing Fontan Circulation
,”
Ann. Thorac. Surg.
,
106
(
5
), pp.
e233
e234
.10.1016/j.athoracsur.2018.04.021
17.
Riemer
,
R. K.
,
Amir
,
G.
,
Reichenbach
,
S. H.
, and
Reinhartz
,
O.
,
2005
, “
Mechanical Support of Total Cavopulmonary Connection With an Axial Flow Pump
,”
J. Thorac. Cardiovasc. Surg.
,
130
(
2
), pp.
351
354
.10.1016/j.jtcvs.2004.12.037
18.
Rodefeld
,
M. D.
,
Boyd
,
J. H.
,
Myers
,
C. D.
,
LaLone
,
B. J.
,
Bezruczko
,
A. J.
,
Potter
,
A. W.
, and
Brown
,
J. W.
,
2003
, “
Cavopulmonary Assist: Circulatory Support for the Univentricular Fontan Circulation
,”
Ann. Thorac. Surg.
,
76
(
6
), pp.
1911
1916
.10.1016/S0003-4975(03)01014-2
19.
Woods
,
R. K.
,
Ghanayem
,
N. S.
,
Mitchell
,
M. E.
,
Kindel
,
S.
, and
Niebler
,
R. A.
,
2017
, “
Mechanical Circulatory Support of the Fontan Patient
,”
Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Ann.
,
20
, pp.
20
27
.10.1053/j.pcsu.2016.09.009
20.
Yu
,
S. C. M.
,
Ng
,
B. T. H.
,
Chan
,
W. K.
, and
Chua
,
L. P.
,
2000
, “
The Flow Patterns Within the Impeller Passages of a Centrifugal Blood Pump Model
,”
Medical Eng. Phys.
,
22
(
6
), pp.
381
93
.10.1016/S1350-4533(00)00045-X
21.
Nishida
,
M.
,
Asztalos
,
B.
,
Yamane
,
T.
,
Masuzawa
,
T.
,
Tsukiya
,
T.
,
Endo
,
S.
,
Taenaka
,
Y.
,
Miyazoe
,
Y.
,
Ito
,
K.
, and
Konishi
,
Y.
,
1999
, “
Flow Visualization Study to Improve Hemocompatibility of a Centrifugal Blood Pump
,”
Artif. Organs
,
23
(
8
), pp.
697
703
.10.1046/j.1525-1594.1999.06400.x
22.
Day
,
S. W.
, and
McDaniel
,
J. C.
,
2005a
, “
PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow
,”
ASME J. Biomech. Eng.
,
127
(
2
), pp.
244
253
.10.1115/1.1865189
23.
Day
,
S. W.
, and
McDaniel
,
J. C.
,
2005b
, “
PIV Measurements of Flow in a Centrifugal Blood Pump: Time-Varying Flow
,”
ASME J. Biomech. Eng.
,
127
(
2
), pp.
254
263
.10.1115/1.1865190
24.
Rowlands
,
G. W.
,
Good
,
B. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2018
, “
Characterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
,
140
(
7
), pp.
1
13
.10.1115/1.4039822
25.
Hariharan
,
P.
,
Aycock
,
K. I.
,
Buesen
,
M.
,
Day
,
S. W.
,
Good
,
B. C.
,
Herbertson
,
L. H.
,
Steinseifer
,
U.
,
Manning
,
K. B.
,
Craven
,
B. A.
, and
Malinauskas
,
R. A.
,
2018
, “
Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV)
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
623
640
.10.1007/s13239-018-00378-y
26.
Cooper
,
B. T.
,
Roszelle
,
B. N.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2008
, “
The 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: Fluid Dynamics Associated With Valve Selection
,”
ASME J. Biomech. Eng.
,
130
(
4
), pp.
1
14
.10.1115/1.2939342
27.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
,
2004
, “
Wall Shear-Rate Estimation Within the 50 cc Penn State Artificial Heart Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
,
126
(
4
), pp.
430
437
.10.1115/1.1784477
28.
Nanna
,
J. C.
,
Wivholm
,
J. A.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2011
, “
Flow Field Study Comparing Design Iterations of a 50 cc Left Ventricular Assist Device
,”
ASAIO J.
,
57
(
5
), pp.
349
357
.10.1097/MAT.0b013e318224e20b
29.
Roszelle
,
B. N.
,
Deutsch
,
S.
,
Weiss
,
W. J.
, and
Manning
,
K. B.
,
2011
, “
Flow Visualization of a Pediatric Ventricular Assist Device During Stroke Volume Reductions Related to Weaning
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
2046
2058
.10.1007/s10439-011-0291-8
30.
Roszelle
,
B. B.
,
Cooper
,
B. T.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2008
, “
The 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device: Flow Field Observations at a Reduced Beat Rate With Application to Weaning
,”
ASAIO J.
,
54
(
3
), pp.
325
331
.10.1097/MAT.0b013e3181695cfe
31.
Topper
,
S. R.
,
Navitsky
,
M. A.
,
Medvitz
,
R. B.
,
Paterson
,
E. G.
,
Siedlecki
,
C. A.
,
Slattery
,
M. J.
,
Deutsch
,
S.
,
Rosenberg
,
G.
, and
Manning
,
K. B.
,
2014
, “
The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs
,”
Cardiovasc. Eng. Technol.
,
5
(
1
), pp.
54
69
.10.1007/s13239-014-0174-x
32.
Malinauskas
,
R. A.
,
Hariharan
,
P.
,
Day
,
S. W.
,
Herbertson
,
L. H.
,
Buesen
,
M.
,
Steinseifer
,
U.
,
Aycock
,
K. I.
,
Good
,
B. C.
,
Deutsch
,
S.
,
Manning
,
K. B.
, and
Craven
,
B. A.
,
2017
, “
FDA Benchmark Medical Device Flow Models for CFD Validation
,”
ASAIO J.
,
63
(
2
), pp.
150
160
.10.1097/MAT.0000000000000499
33.
Cysyk
,
J. P.
,
Clark
,
J. B.
,
Newswanger
,
R.
,
Jhun
,
C. S.
,
Izer
,
J.
,
Finicle
,
H.
,
Reibson
,
J.
,
Doxtater
,
B.
,
Weiss
,
W.
, and
Rosenberg
,
G.
,
2019
, “
Chronic In Vivo Test of a Right Heart Replacement Blood Pump for Failed Fontan Circulation
,”
ASAIO J.
,
65
(
6
), pp.
593
600
.10.1097/MAT.0000000000000888
34.
Cysyk
,
J. P.
,
Lukic
,
B.
,
Brian
,
C. J.
,
Newswanger
,
R.
,
Jhun
,
C.-S.
,
Izer
,
J.
,
Flory
,
H.
,
Reibson
,
J.
,
Doxtater
,
B.
,
Weiss
,
W.
, and
Rosenberg
,
G.
,
2021
, “
Miniturized Fontan Circulation Assist Device: Chronic In Vivo Evaluation
,”
ASAIO J.
, 67(11), pp. 1240–1249.10.1097/MAT.0000000000001439
35.
Cooper
,
B. T.
,
Roszelle
,
B. N.
,
Long
,
T. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
The Influence of Operational Protocol on the Fluid Dynamics in the 12 Cc Penn State Pulsatile Pediatric Ventricular Assist Device: The Effect of End-Diastolic Delay
,”
Artif. Organs
,
34
(
4
), pp.
E122
E133
.10.1111/j.1525-1594.2009.00852.x
36.
Gallagher
,
M. B.
,
Aycock
,
K. I.
,
Craven
,
B. A.
, and
Manning
,
K. B.
,
2018
, “
Steady Flow in a Patient-Averaged Inferior Vena Cava—Part I: Particle Image Velocimetry Measurements at Rest and Exercise Conditions
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
641
653
.10.1007/s13239-018-00390-2
37.
Roszelle
,
B. N.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2010
, “
Flow Visualization of Three-Dimensionality Inside the 12 Cc Penn State Pulsatile Pediatric Ventricular Assist Device
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
439
455
.10.1007/s10439-009-9842-7
38.
Klimes
,
K.
,
Abdul-Khaliq
,
H.
,
Ovroutski
,
S.
,
Hui
,
W.
,
Alexi-Meskishvili
,
V.
,
Spors
,
B.
,
Hetzer
,
R.
,
Felix
,
R.
,
Lange
,
P. E.
,
Berger
,
F.
, and
Gutberlet
,
M.
,.
2007
, “
Pulmonary and Caval Blood Flow Patterns in Patients With Intracardiac and Extracardiac Fontan: A Magnetic Resonance Study
,”
Clinical Res. Cardiol.
,
96
(
3
), pp.
160
167
.10.1007/s00392-007-0470-z
39.
Hart
,
D. P.
,
2000
, “
Super-Resolution PIV by Recursive Local-Correlation
,”
J. Vis.
,
3
(
2
), pp.
187
194
.10.1007/BF03182411
40.
Taylor
,
J. O.
,
Good
,
B. C.
,
Paterno
,
A. V.
,
Hariharan
,
P.
,
Deutsch
,
S.
,
Malinauskas
,
R. A.
, and
Manning
,
K. B.
,
2016
, “
Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry
,”
Cardiovasc. Eng. Technol.
,
7
(
3
), pp.
191
209
.10.1007/s13239-016-0270-1
41.
Baldwin
,
J. T.
,
Deutsch
,
S.
,
Petrie
,
H. L.
, and
Tarbell
,
J. M.
,
1993
, “
Determination of Principal Reynolds Stresses in Pulsatile Flows After Elliptical Filtering of Discrete Velocity Measurements
,”
ASME J. Biomech. Eng.
,
115
(
4A
), pp.
396
403
.10.1115/1.2895503
42.
Sankovic
,
J. M.
,
Kadambi
,
J. R.
,
Mehta
,
M.
,
Smith
,
W. A.
, and
Wernet
,
M. P.
,
2004
, “
PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump
,”
ASME J. Fluids Eng., Trans. ASME
,
126
(
5
), pp.
730
734
.10.1115/1.1789529
43.
Thamsen
,
B.
,
Blümel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.10.1111/aor.12542
44.
Telyshev
,
D. V.
,
Denisov
,
M.
, and
Selishchev
,
S. V.
,
2019
, “
Numerical Modeling of Blood Flows in Rotary Pumps for Use in Pediatric Heart Surgery in Patients Undergoing the Fontan Procedure
,”
Biomed. Eng.
,
52
(
6
), pp.
407
411
.10.1007/s10527-019-09857-5
45.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.10.1115/1.4007092
46.
Chen
,
Z.
,
Jena
,
S. K.
,
Giridharan
,
G. A.
,
Koenig
,
S. C.
,
Slaughter
,
M. S.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2018
, “
Flow Features and Device-Induced Blood Trauma in CF-VADs Under a Pulsatile Blood Flow Condition: A CFD Comparative Study
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
2
), p.
e2924
.10.1002/cnm.2924
47.
Jhun
,
C. S.
,
Stauffer
,
M. A.
,
Reibson
,
J. D.
,
Yeager
,
E. E.
,
Newswanger
,
R. K.
,
Taylor
,
J. O.
,
Manning
,
K. B.
,
Weiss
,
W. J.
, and
Rosenberg
,
G.
,
2018
, “
Determination of Reynolds Shear Stress Level for Hemolysis
,”
ASAIO J.
,
64
(
1
), pp.
63
69
.10.1097/MAT.0000000000000615
48.
Sallam
,
A. M.
, and
Hwang
,
H. C.
,
1984
, “
Human Red Blood Cell Hemolysis in a Turbulent Shear Flow: Contribution of Reynolds Shear Stresses
,”
Biorheology
,
21
(
6
), pp.
783
797
.10.3233/BIR-1984-21605
49.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Devices
,”
Medical Eng. Phys.
,
33
(
3
), pp.
263
280
.10.1016/j.medengphy.2010.10.014
You do not currently have access to this content.