Abstract

Lumbar lordotic correction (LLC), the gold standard treatment for sagittal spinal malalignment (SMA), and its effect on sagittal balance have been critically discussed in recent studies. This paper assesses the biomechanical response of the spinal components to LLC as an additional factor for the evaluation of LLC. Human lumbar spines (L2L5) were loaded with combined bending moments in flexion (Flex)/extension (Ex) or lateral bending (LatBend) and axial rotation (AxRot) in a physiological environment. We examined the dependency of AxRot range of motion (RoM) on the applied bending moment. The results were used to validate a finite element (FE) model of the lumbar spine. With this model, the biomechanical response of the intervertebral discs (IVD) and facet joints under daily motion was studied for different sagittal alignment postures, simulated by a motion in Flex/Ex direction. Applied bending moments decreased AxRot RoM significantly (all P < 0.001). A stronger decline of AxRot RoM for Ex than for Flex direction was observed (all P < 0.0001). Our simulated results largely agreed with the experimental data (all R2 > 0.79). During the daily motion, the IVD was loaded higher with increasing lumbar lordosis (LL) for all evaluated values at L2L3 and L3L4 and posterior annulus stress (AS) at L4L5 (all P < 0.0476). The results of this study indicate that LLC with large extensions of LL may not always be advantageous regarding the biomechanical loading of the IVD. This finding may be used to improve the planning process of LLC treatments.

References

1.
Diebo
,
B. G.
,
Varghese
,
J. J.
,
Lafage
,
R.
,
Schwab
,
F. J.
, and
Lafage
,
V.
,
2015
, “
Sagittal Alignment of the Spine: What Do You Need to Know?
,”
Clin. Neurol. Neurosurg.
,
139
, pp.
295
301
.10.1016/j.clineuro.2015.10.024
2.
Lafage
,
R.
,
Obeid
,
I.
,
Liabaud
,
B.
,
Bess
,
S.
,
Burton
,
D.
,
Smith
,
J. S.
,
Jalai
,
C.
,
Hostin
,
R.
,
Shaffrey
,
C. I.
,
Ames
,
C.
,
Kim
,
H. J.
,
Klineberg
,
E.
,
Schwab
,
F.
, and
Lafage
,
V.
,
2019
, “
Location of Correction Within the Lumbar Spine Impacts Acute Adjacent-Segment Kyphosis
,”
J. Neurosurg. Spine
,
30
(
1
), pp.
69
77
.10.3171/2018.6.SPINE161468
3.
Ferraris
,
L.
,
Koller
,
H.
,
Meier
,
O.
, and
Hempfing
,
A.
,
2012
, “
Die Bedeutung Der Sagittalen Balance in Der Wirbelsäulenchirurgie
,”
Dtsch. Ärzte-Verlag
,
1
(
12
), pp.
502
508
.10.3238/oup.2012.0502
4.
Shah
,
A.
,
Lemans
,
J. V. C.
,
Zavatsky
,
J.
,
Agarwal
,
A.
,
Kruyt
,
M. C.
,
Matsumoto
,
K.
,
Serhan
,
H.
,
Agarwal
,
A.
, and
Goel
,
V. K.
,
2019
, “
Spinal Balance/Alignment-Clinical Relevance and Biomechanics
,”
ASME J. Biomech. Eng.
,
141
(
7
), pp.
1
14
.10.1115/1.4043650
5.
Shimizu
,
M.
,
Kobayashi
,
T.
,
Chiba
,
H.
,
Senoo
,
I.
,
Abe
,
S.
,
Matsukura
,
K.
, and
Ito
,
H.
,
2020
, “
Examination of the Changes in Lower Extremities Related to Progression of Adult Spinal Deformity: A Longitudinal Study of Over 22 Years
,”
Sci. Rep.
,
10
(
1
), pp.
1
9
.10.1038/s41598-020-68573-3
6.
Caprara
,
S.
,
Moschini
,
G.
,
Snedeker
,
J. G.
,
Farshad
,
M.
, and
Senteler
,
M.
,
2020
, “
Spinal Sagittal Alignment Goals Based on Statistical Modelling and Musculoskeletal Simulations
,”
J. Biomech.
,
102
(January), p.
109621
.10.1016/j.jbiomech.2020.109621
7.
Le Huec
,
J. C.
,
Thompson
,
W.
,
Mohsinaly
,
Y.
,
Barrey
,
C.
, and
Faundez
,
A.
,
2019
, “
Sagittal Balance of the Spine
,”
Eur. Spine J.
,
28
(
9
), pp.
1889
1905
.10.1007/s00586-019-06083-1
8.
Kim
,
H. J.
,
Bridwell
,
K. H.
,
Lenke
,
L. G.
,
Park
,
M. S.
,
Song
,
K. S.
,
Piyaskulkaew
,
C.
, and
Chuntarapas
,
T.
,
2014
, “
Patients With Proximal Junctional Kyphosis Requiring Revision Surgery Have Higher Postoperative Lumbar Lordosis and Larger Sagittal Balance Corrections
,”
Spine (Phila. Pa. 1976)
,
39
(
9
), pp.
576
580
.
9.
Maruo
,
K.
,
Ha
,
Y.
,
Inoue
,
S.
,
Samuel
,
S.
,
Okada
,
E.
,
Hu
,
S. S.
,
Deviren
,
V.
,
Burch
,
S.
,
William
,
S.
,
Ames
,
C. P.
,
Mummaneni
,
P. V.
,
Chou
,
D.
, and
Berven
,
S. H.
,
2013
, “
Predictive Factors for Proximal Junctional Kyphosis in Long Fusions to the Sacrum in Adult Spinal Deformity
,”
Spine (Phila. Pa. 1976)
,
38
(
23
), pp.
14
20
.10.1097/BRS.0b013e3182a51d43
10.
Saimon
,
Y.
,
Goh
,
A.-C.
,
Momose
,
K.
,
Ryuzaki
,
D.
,
Akahane
,
H.
,
Oba
,
A.
, and
Mukaiyama
,
K.
,
2020
, “
Correlation Between Radiographic Sagittal Alignment, Range of Motion, Muscle Strength, and Quality of Life in Adults With Spinal Deformities
,”
J. Phys. Ther. Sci.
,
32
(
2
), pp.
140
147
.10.1589/jpts.32.140
11.
Yanagisawa
,
S.
,
Sato
,
N.
,
Shimizu
,
M.
,
Saito
,
K.
,
Yamamoto
,
A.
, and
Takagishi
,
K.
,
2015
, “
Relation Among the Knee, Sagittal Spinal Alignment, and the Spinal Range of Motion: Investigation in Local Medical Check-Ups Using the Spinal Mouse
,”
Asia-Pacific J. Sport. Med. Arthrosc. Rehabil. Technol.
,
2
(
2
), pp.
68
71
.10.1016/j.asmart.2015.01.002
12.
Burnett
,
A.
,
O'Sullivan
,
P.
,
Ankarberg
,
L.
,
Gooding
,
M.
,
Nelis
,
R.
,
Offermann
,
F.
, and
Persson
,
J.
,
2008
, “
Lower Lumbar Spine Axial Rotation is Reduced in End-Range Sagittal Postures When Compared to a Neutral Spine Posture
,”
Man. Ther.
,
13
(
4
), pp.
300
306
.10.1016/j.math.2007.01.016
13.
Haberl
,
H.
,
Cripton
,
P. A.
,
Orr
,
T. E.
,
Beutler
,
T.
,
Frei
,
H.
,
Lanksch
,
W. R.
, and
Nolte
,
L. P.
,
2004
, “
Kinematic Response of Lumbar Functional Spinal Units to Axial Torsion With and Without Superimposed Compression and Flexion/Extension
,”
Eur. Spine J.
,
13
(
6
), pp.
560
566
.10.1007/s00586-004-0720-6
14.
Drake
,
J. D. M.
, and
Callaghan
,
J. P.
,
2008
, “
Do Flexion/Extension Postures Affect the In Vivo Passive Lumbar Spine Response to Applied Axial Twist Moments?
,”
Clin. Biomech.
,
23
(
5
), pp.
510
519
.10.1016/j.clinbiomech.2007.12.005
15.
Panjabi
,
M. M.
,
1992
, “
The Stabilizing System of the Spine: Part I. Function, Dysfunction, Adaptation, and Enhancement
,”
J. Spinal Disord.
,
5
(
4
), pp.
383
389
.10.1097/00002517-199212000-00001
16.
Casaroli
,
G.
,
Villa
,
T.
,
Bassani
,
T.
,
Berger-Roscher
,
N.
,
Wilke
,
H. J.
, and
Galbusera
,
F.
,
2017
, “
Numerical Prediction of the Mechanical Failure of the Intervertebral Disc Under Complex Loading Conditions
,”
Mater. (Basel).
,
10
(
1
), p.
31
.10.3390/ma10010031
17.
Zahari
,
S. N.
,
Latif
,
M. J. A.
,
Rahim
,
N. R. A.
,
Kadir
,
M. R. A.
, and
Kamarul
,
T.
,
2017
, “
The Effects of Physiological Biomechanical Loading on Intradiscal Pressure and Annulus Stress in Lumbar Spine: A Finite Element Analysis
,”
J. Healthcare Eng.
,
2017
, pp.
1
8
.10.1155/2017/9618940
18.
Schmidt
,
H.
,
Kettler
,
A.
,
Heuer
,
F.
,
Simon
,
U.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Intradiscal Pressure, Shear Strain, and Fiber Strain in the Intervertebral Disc Under Combined Loading
,”
Spine (Phila. PA 1976)
,
32
(
7
), pp.
748
755
.10.1097/01.brs.0000259059.90430.c2
19.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
,
Kiapour
,
A.
,
Kim
,
Y. H.
,
Labus
,
K. M.
,
Little
,
J. P.
,
Park
,
W. M.
,
Wang
,
Y. H.
,
Wilke
,
H. J.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.10.1016/j.jbiomech.2014.04.002
20.
Mills
,
M. J.
, and
Sarigul-Klijn
,
N.
,
2019
, “
Validation of an In Vivo Medical Image-Based Young Human Lumbar Spine Finite Element Model
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
031003
.10.1115/1.4042183
21.
Du
,
C.
,
Guo
,
J.
,
Huang
,
Y.
, and
Fan
,
Y.
,
2015
, “
Erratum to: World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015, Toronto, Canada, (2015) 51, 10.1007/978-3-319-19387-8_427)
,”
IFMBE Proc.
,
51
, pp.
326
327
.10.1007/978-3-319-19387-8
22.
Rohlmann
,
A.
,
Zander
,
T.
,
Rao
,
M.
, and
Bergmann
,
G.
,
2009
, “
Applying a Follower Load Delivers Realistic Results for Simulating Standing
,”
J. Biomech.
,
42
(
10
), pp.
1520
1526
.10.1016/j.jbiomech.2009.03.048
23.
Beckmann
,
A.
,
Mundt
,
M.
,
Herren
,
C.
,
Siewe
,
J.
,
Kobbe
,
P.
,
Sobottke
,
R.
,
Stoffel
,
M.
, and
Markert
,
B.
,
2016
, “
Development and Experimental Validation of a Patient-Specific Lumbar Spine FE Model to Predict the Effects of Instrumentations
,”
PAMM
,
16
(
1
), pp.
73
74
.10.1002/pamm.201610025
24.
Gornet
,
M. F.
,
Chan
,
F. W.
,
Coleman
,
J. C.
,
Murrell
,
B.
,
Nockels
,
R. P.
,
Taylor
,
B. A.
,
Lanman
,
T. H.
, and
Ochoa
,
J. A.
,
2011
, “
Biomechanical Assessment of a PEEK Rod System for Semi-Rigid Fixation of Lumbar Fusion Constructs
,”
ASME J. Biomech. Eng.
,
133
(
8
), p.
081009
.10.1115/1.4004862
25.
Xu
,
M.
,
Yang
,
J.
,
Lieberman
,
I. H.
, and
Haddas
,
R.
,
2017
, “
Lumbar Spine Finite Element Model for Healthy Subjects: Development and Validation
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
1
), pp.
1
15
.10.1080/10255842.2016.1193596
26.
Zafarparandeh
,
I.
,
Erbulut
,
D. U.
, and
Ozer
,
A. F.
,
2016
, “
Motion Analysis Study on Sensitivity of Finite Element Model of the Cervical Spine to Geometry
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
230
(
7
), pp.
700
706
.10.1177/0954411916644634
27.
Gómez
,
F. S.
,
Lorza
,
R. L.
,
Bobadilla
,
M. C.
, and
García
,
R. E.
,
2017
, “
Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method
,”
Materials (Basel)
,
10
(
10
), pp.
1116
39
.10.3390/ma10101116
28.
Ezquerro
,
F.
,
Vacas
,
F. G.
,
Postigo
,
S.
,
Prado
,
M.
, and
Simón
,
A.
,
2011
, “
Medical Engineering & Physics Calibration of the Finite Element Model of a Lumbar Functional Spinal Unit Using an Optimization Technique Based on Differential Evolution
,”
Med. Eng. Phys.
,
33
(
1
), pp.
89
95
.10.1016/j.medengphy.2010.09.010
29.
Heuer
,
F.
,
Schmidt
,
H.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Vertebral Translation and Intradiscal Pressure
,”
J. Biomech.
,
40
(
4
), pp.
795
803
.10.1016/j.jbiomech.2006.03.016
30.
Heuer
,
F.
,
Schmidt
,
H.
, and
Wilke
,
H.-J.
,
2008
, “
Stepwise Reduction of Functional Spinal Structures Increase Disc Bulge and Surface Strains
,”
J. Biomech.
,
41
(
9
), pp.
1953
1960
.10.1016/j.jbiomech.2008.03.023
31.
Jaramillo
,
H. E.
,
Puttlitz
,
C. M.
,
McGilvray
,
K.
, and
García
,
J. J.
,
2016
, “
Characterization of the L4–L5–S1 Motion Segment Using the Stepwise Reduction Method
,”
J. Biomech.
,
49
(
7
), pp.
1248
1254
.10.1016/j.jbiomech.2016.02.050
32.
Wilke
,
H. J.
,
Rohlmann
,
F.
,
Neidlinger-Wilke
,
C.
,
Werner
,
K.
,
Claes
,
L.
, and
Kettler
,
A.
,
2006
, “
Validity and Interobserver Agreement of a New Radiographic Grading System for Intervertebral Disc Degeneration: Part I. Lumbar Spine
,”
Eur. Spine J.
,
15
(
6
), pp.
720
730
.10.1007/s00586-005-1029-9
33.
Beckmann
,
A.
,
Herren
,
C.
,
Mundt
,
M.
,
Siewe
,
J.
,
Kobbe
,
P.
,
Sobottke
,
R.
,
Pape
,
H. C.
,
Stoffel
,
M.
, and
Markert
,
B.
,
2018
, “
A New In Vitro Spine Test Rig to Track Multiple Vertebral Motions Under Physiological Conditions
,”
Biomed. Technol.
,
63
(
4
), pp.
341
347
.10.1515/bmt-2016-0173
34.
Beckmann
,
A.
,
Nicolini
,
L. F.
,
Grevenstein
,
D.
,
Backes
,
H.
,
Oikonomidis
,
S.
,
Sobottke
,
R.
,
Kobbe
,
P.
,
Hildebrand
,
F.
,
Stoffel
,
M.
,
Markert
,
B.
,
Siewe
,
J.
, and
Herren
,
C.
,
2020
, “
Biomechanical In Vitro Testof a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions
,”
ASME J. Biomech. Eng.
,
142
(
1
), p.
011005
.10.1115/1.4044242
35.
Herren
,
C.
,
Beckmann
,
A.
,
Meyer
,
S.
,
Pishnamaz
,
M.
,
Mundt
,
M.
,
Sobottke
,
R.
,
Prescher
,
A.
,
Stoffel
,
M.
,
Markert
,
B.
,
Kobbe
,
P.
,
Pape
,
H. C.
,
Eysel
,
P.
, and
Siewe
,
J.
,
2017
, “
Biomechanical Testing of a PEEK-Based Dynamic Instrumentation Device in a Lumbar Spine Model
,”
Clin. Biomech.
,
44
, pp.
67
74
.10.1016/j.clinbiomech.2017.03.009
36.
Beckmann
,
A.
,
Herren
,
C.
,
Nicolini
,
L. F.
,
Grevenstein
,
D.
,
Oikonomidis
,
S.
,
Kobbe
,
P.
,
Hildebrand
,
F.
,
Stoffel
,
M.
,
Markert
,
B.
, and
Siewe
,
J.
,
2019
, “
Biomechanical Testing of a Polycarbonate-Urethane-Based Dynamic Instrumentation System Under Physiological Conditions
,”
Clin. Biomech.
,
61
, pp.
112
119
.10.1016/j.clinbiomech.2018.12.003
37.
Nicolini
,
L. F.
,
Kobbe
,
P.
,
Seggewiß
,
J.
,
Greven
,
J.
,
Ribeiro
,
M.
,
Beckmann
,
A.
,
Da Paz
,
S.
,
Eschweiler
,
J.
,
Prescher
,
A.
,
Markert
,
B.
,
Stoffel
,
M.
,
Hildebrand
,
F.
, and
Trobisch
,
P. D.
,
2021
, “
Motion Preservation Surgery for Scoliosis With a Vertebral Body Tethering System: A Biomechanical Study
,”
Eur. Spine J.
, epub.10.1007/s00586-021-07035-4
38.
Beckmann
,
A.
,
2021
, “
Biomechanical Investigation of Posterior Dynamic Stabilization Systems of the Lumbar Spine
,”
Institute of General Mechanics
,
RWTH Aachen University
,
Aachen, Germany
.10.18154/RWTH-2021-05091
39.
Smit
,
T. H.
,
Van Tunen
,
M. S.
,
Van Der Veen
,
A. J.
,
Kingma
,
I.
, and
Van Dien
,
J. H.
,
2011
, “
Quantifying Intervertebral Disc Mechanics: A New Definition of the Neutral Zone
,”
BMC Musculoskelet. Disord.
,
12
(
1
), p.
38
.10.1186/1471-2474-12-38
40.
Coombs
,
D.
,
Bushelow
,
M.
,
Laz
,
P.
,
Rao
,
M.
, and
Rullkoetter
,
P.
,
2013
, “
Stepwise Validated Finite Element Model of the Human Lumbar Spine
,”
ASME
Paper No. FMD2013-16167.10.1115/FMD2013-16167
41.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
42.
Green
,
A. E.
, and
Zerna
,
W.
,
1954
,
Theoretical Elasticity
,
Clarendon Press
,
Oxford, UK
.
43.
Cobian
,
D.
,
Heiderscheit
,
B.
,
Daehn
,
N.
, and
Anderson
,
P. A.
,
2012
, “
Comparison of Daily Motion of the Cervical and Lumbar Spine to ASTM F2423-11 and ISO 18192-1.2011 Standard Testing
,”
ASTM Spec. Tech. Publ.
,
1535STP
(
1
), pp.
37
50
.10.1520/STP49399T
44.
Zhang
,
H.
, and
Zhu
,
W.
,
2019
, “
The Path to Deliver the Most Realistic Follower Load for a Lumbar Spine in Standing Posture: A Finite Element Study
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
031010
.10.1115/1.4042438
45.
Dreischarf
,
M.
,
Zander
,
T.
,
Bergmann
,
G.
, and
Rohlmann
,
A.
,
2010
, “
A Non-Optimized Follower Load Path May Cause Considerable Intervertebral Rotations
,”
J. Biomech.
,
43
(
13
), pp.
2625
2628
.10.1016/j.jbiomech.2010.05.033
46.
Popovich
,
J. M.
,
Welcher
,
J. B.
,
Hedman
,
T. P.
,
Tawackoli
,
W.
,
Anand
,
N.
,
Chen
,
T. C.
, and
Kulig
,
K.
,
2013
, “
Lumbar Facet Joint and Intervertebral Disc Loading During Simulated Pelvic Obliquity
,”
Spine J.
,
13
(
11
), pp.
1581
1589
.10.1016/j.spinee.2013.04.011
47.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H. J.
,
2008
, “
Interaction Between Finite Helical Axes and Facet Joint Forces Under Combined Loading
,”
Spine (Phila. Pa. 1976).
,
33
(
25
), pp.
2741
2748
.10.1097/BRS.0b013e31817c4319
48.
Bible
,
J. E.
,
Biswas
,
D.
,
Miller
,
C. P.
,
Whang
,
P. G.
, and
Grauer
,
J. N.
,
2010
, “
Normal Functional Range of Motion of the Lumbar Spine During 15 Activities of Daily Living
,”
J. Spinal Disord. Tech.
,
23
(
2
), pp.
106
112
.10.1097/BSD.0b013e3181981823
49.
Inoue
,
N.
,
Espinoza Orías
,
A. A.
, and
Segami
,
K.
,
2020
, “
Biomechanics of the Lumbar Facet Joint
,”
Spine Surg. Relat. Res.
,
4
(
1
), pp.
1
7
.10.22603/ssrr.2019-0017
50.
Shirazi-Adl
,
A.
, and
Drouin
,
G.
,
1987
, “
Load-Bearing Role of Facets in a Lumbar Segment Under Sagittal Plane Loadings
,”
J. Biomech.
,
20
(
6
), pp.
601
613
.10.1016/0021-9290(87)90281-8
51.
Dreischarf
,
M.
,
Shirazi-Adl
,
A.
,
Arjmand
,
N.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2016
, “
Estimation of Loads on Human Lumbar Spine: A Review of In Vivo and Computational Model Studies
,”
J. Biomech.
,
49
(
6
), pp.
833
845
.10.1016/j.jbiomech.2015.12.038
52.
Casaroli
,
G.
,
Villa
,
T.
, and
Galbusera
,
F.
,
2017
, “
Finite Element Comparison Between the Human and the Ovine Lumbar Intervertebral Disc
,”
Muscles Ligaments Tendons J.
,
7
(
4
), pp.
510
519
.10.11138/mltj/2017.7.4.510
53.
Wilson
,
D. C.
,
Niosi
,
C. A.
,
Zhu
,
Q. A.
,
Oxland
,
T. R.
, and
Wilson
,
D. R.
,
2006
, “
Accuracy and Repeatability of a New Method for Measuring Facet Loads in the Lumbar Spine
,”
J. Biomech.
,
39
(
2
), pp.
348
353
.10.1016/j.jbiomech.2004.12.011
54.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.10.1016/j.jbiomech.2005.07.026
55.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H. J.
,
2009
, “
Dependency of Disc Degeneration on Shear and Tensile Strains Between Annular Fiber Layers for Complex Loads
,”
Med. Eng. Phys.
,
31
(
6
), pp.
642
649
.10.1016/j.medengphy.2008.12.004
56.
Li
,
Q. Y.
,
Kim
,
H. J.
,
Son
,
J.
,
Kang
,
K. T.
,
Chang
,
B. S.
,
Lee
,
C. K.
,
Seok
,
H. S.
, and
Yeom
,
J. S.
,
2017
, “
Biomechanical Analysis of Lumbar Decompression Surgery in Relation to Degenerative Changes in the Lumbar Spine – Validated Finite Element Analysis
,”
Comput. Biol. Med.
,
89
, pp.
512
519
.10.1016/j.compbiomed.2017.09.003
57.
Long
,
R. G.
,
Torre
,
O. M.
,
Hom
,
W. W.
,
Assael
,
D. J.
, and
Iatridis
,
J. C.
,
2016
, “
Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021007
.10.1115/1.4032353
58.
Thomas Edwards
,
W.
,
Ordway
,
N. R.
,
Zheng
,
Y.
,
McCullen
,
G.
,
Han
,
Z.
, and
Yuan
,
H. A.
,
2001
, “
Peak Stresses Observed in the Posterior Lateral Anulus
,”
Spine (Phila. Pa. 1976)
,
26
(
16
), pp.
1753
1759
.10.1097/00007632-200108150-00005
59.
Kim
,
Y. B.
,
Kim
,
Y. J.
,
Ahn
,
Y. J.
,
Kang
,
G. B.
,
Yang
,
J. H.
,
Lim
,
H.
, and
Lee
,
S. W.
,
2014
, “
A Comparative Analysis of Sagittal Spinopelvic Alignment Between Young and Old Men Without Localized Disc Degeneration
,”
Eur. Spine J.
,
23
(
7
), pp.
1400
1406
.10.1007/s00586-014-3236-8
You do not currently have access to this content.