Abstract

Cyclic mechanical loading of cartilage induces stresses and fluid flow, which are thought to modulate chondrocyte metabolism. The uneven surface, plus the heterogeneity of cartilage within a joint, makes stress and fluid pressure distribution in the tissue nonuniform, and gene expression may vary at different sites as a function of load magnitude, frequency, and time. In previous studies, cartilage explants were used for loading tests to investigate biological responses of the cartilage to mechanical loading. In contrast, we used loading tests on intact knee joints, to better reflect the loading conditions in a joint, and thus provide a more physiologically relevant mechanical environment. Gene expression levels in loaded samples for a selection of relevant genes were compared with those of the corresponding unloaded control samples to characterize potential differences. Furthermore, the effects of load magnitude and duration on gene expression levels were investigated. We observed differences in gene expression levels between samples from different sites in the same joint and between corresponding samples from the same site in loaded and unloaded joints. Consistent with previous findings, our results indicate that there is a critical upper and lower threshold of loading for triggering the expression of certain genes. Variations in gene expression levels may reflect the effect of local loading, topography, and structure of the cartilage in an intact joint on the metabolic activity of the associated cells.

References

1.
Urban
,
J. P. G.
,
Hall
,
A. C.
, and
Gehl
,
K. A.
,
1993
, “
Regulation of Matrix Synthesis Rates by the Ionic and Osmotic Environment of Articular Chondrocytes
,”
J. Cell. Physiol.
,
154
(
2
), pp.
262
270
.10.1002/jcp.1041540208
2.
Goldring
,
M. B.
, and
Goldring
,
S. R.
,
2010
, “
Articular Cartilage and Subchondral Bone in the Pathogenesis of Osteoarthritis
,”
Ann. N. Y. Acad. Sci.
,
1192
(
1
), pp.
230
237
.10.1111/j.1749-6632.2009.05240.x
3.
Mueller
,
M. B.
, and
Tuan
,
R. S.
,
2011
, “
Anabolic/Catabolic Balance in Pathogenesis of Osteoarthritis: Identifying Molecular Targets
,”
PMR
,
3
(
6
), pp.
S3
S11
.10.1016/j.pmrj.2011.05.009
4.
Buschmann
,
M. D.
,
Kim
,
Y.
,
Wong
,
M.
,
Frank
,
E.
,
Hunziker
,
E.
, and
Grodzinsky
,
A.
,
1999
, “
Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading is Localized to Regions of High Interstitial Fluid Flow
,”
Arch. Biochem. Biophys.
,
366
(
1
), pp.
1
7
.10.1006/abbi.1999.1197
5.
Schätti
,
O. R.
,
Marková
,
M.
,
Torzilli
,
P. A.
, and
Gallo
,
L. M.
,
2015
, “
Mechanical Loading of Cartilage Explants With Compression and Sliding Motion Modulates Gene Expression of Lubricin and Catabolic Enzymes
,”
Cartilage
,
6
(
3
), pp.
185
193
.10.1177/1947603515581680
6.
Davisson
,
T.
,
Kunig
,
S.
,
Chen
,
A.
,
Sah
,
R.
, and
Ratcliffe
,
A.
,
2002
, “
Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage
,”
J. Orthop. Res.
,
20
(
4
), pp.
842
848
.10.1016/S0736-0266(01)00160-7
7.
Ko
,
F. C.
,
Dragomir
,
C.
,
Plumb
,
D. A.
,
Goldring
,
S. R.
,
Wright
,
T. M.
,
Goldring
,
M. B.
, and
van der Meulen
,
M. C.
,
2013
, “
In Vivo Cyclic Compression Causes Cartilage Degeneration and Subchondral Bone Changes in Mouse Tibiae
,”
Arthritis Rheumat.
,
65
(
6
), pp.
1569
1578
.10.1002/art.37906
8.
Sah
,
R. L.-Y.
,
Kim
,
Y.-J.
,
Doong
,
J.-Y. H.
,
Grodzinsky
,
A. J.
,
Plass
,
A. H. K.
, and
Sandy
,
J. D.
,
1989
, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
,
7
(
5
), pp.
619
636
.10.1002/jor.1100070502
9.
Christiansen
,
B. A.
,
Anderson
,
M. J.
,
Lee
,
C. A.
,
Williams
,
J. C.
,
Yik
,
J. H.
, and
Haudenschild
,
D. R.
,
2012
, “
Musculoskeletal Changes Following Non-Invasive Knee Injury Using a Novel Mouse Model of Post-Traumatic Osteoarthritis
,”
Osteoarthritis Cartilage
,
20
(
7
), pp.
773
782
.10.1016/j.joca.2012.04.014
10.
Bourne
,
D. A.
,
Moo
,
E. K.
, and
Herzog
,
W.
,
2015
, “
Cartilage and Chondrocyte Response to Extreme Muscular Loading and Impact Loading: Can In Vivo Pre-Load Decrease Impact-Induced Cell Death?
,”
Clin Biomech.
,
30
(
6
), pp.
537
545
.10.1016/j.clinbiomech.2015.04.009
11.
Ronsky
,
J. L.
,
Herzog
,
W.
,
Brown
,
T. D.
,
Pedersen
,
D. R.
,
Grood
,
E. S.
, and
Butler
,
D. L.
,
1995
, “
In-Vivo Quantification of the Cat Patellofemoral Joint Contact Stresses and Areas
,”
J. Biomech.
,
28
(
8
), pp.
977
983
.10.1016/0021-9290(94)00153-U
12.
Kazemi
,
M.
, and
Li
,
L. P.
,
2014
, “
A Viscoelastic Poromechanical Model of the Knee Joint in Large Compression
,”
Med. Eng. Phys.
,
36
(
8
), pp.
998
1006
.10.1016/j.medengphy.2014.04.004
13.
Mäkelä
,
J. T.
,
Rezaeian
,
Z. S.
,
Mikkonen
,
S.
,
Madden
,
R.
,
Han
,
S. K.
,
Jurvelin
,
J. S.
,
Herzog
,
W.
, and
Korhonen
,
R. K.
,
2014
, “
Site-Dependent Changes in Structure and Function of Lapine Articular Cartilage 4 Weeks After Anterior Cruciate Ligament Transection
,”
Osteoarthritis Cartilage
,
22
(
6
), pp.
869
878
.10.1016/j.joca.2014.04.010
14.
Salzmann
,
G.
,
Buchberger
,
M.
,
Stoddart
,
M.
,
Grad
,
S.
,
Milz
,
S.
,
Niemyer
,
P.
,
Sudkamp
,
N.
,
Imhoff
,
A.
, and
Alini
,
M.
,
2011
, “
Varying Regional Topology Within Knee Articular Chondrocytes Under Simulated In vivo Conditions
,”
Tissue Eng. A
,
17
(
3–4
), pp.
451
461
.10.1089/ten.tea.2009.0819
15.
Rodriguez
,
M. L.
, and
Li
,
L. P.
,
2017
, “
Compression-Rate-Dependent Nonlinear Mechanics of Normal and Impaired Porcine Knee Joints
,”
BMC Musculoskelet. Disord.
,
18
(
1
), p.
447
.10.1186/s12891-017-1805-9
16.
Proffen
,
B. L.
,
McElfresh
,
M.
,
Fleming
,
B. C.
, and
Murray
,
M. M.
,
2012
, “
A Comparative Anatomical Study of the Human Knee and Six Animal Species
,”
The Knee
,
19
(
4
), pp.
493
499
.10.1016/j.knee.2011.07.005
17.
Reno
,
C.
,
Marchuk
,
L.
,
Sciore
,
P.
,
Frank
,
C. B.
, and
Hart
,
D. A.
,
1997
, “
Rapid Isolation of Total RNA from Small Samples of Hypocellular, Dense Connective Tissues
,”
Biotechniques
,
22
(
6
), pp.
1082
1086
.10.2144/97226bm16
18.
Mane
,
V. P.
,
Heuer
,
M. A.
,
Hillyer
,
P.
,
Navarro
,
M. B.
, and
Rabin
,
R. L.
,
2008
, “
Systematic Method for Determining an Ideal Housekeeping Gene for Real-Time PCR Analysis
,”
J. Biomol. Tech.
,
19
(
5
), pp.
342
347
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628067/
19.
Moo
,
E. K.
,
Abusara
,
Z.
,
Abu Osman
,
N. A.
,
Pingguan-Murphy
,
B.
, and
Herzog
,
W.
,
2013
, “
Dual Photon Excitation Microscopy and Image Threshold Segmentation in Live Cell Imaging During Compression Testing
,”
J. Biomech.
,
46
(
12
), pp.
2024
2031
.10.1016/j.jbiomech.2013.06.007
20.
Fernández-Moreno
,
M.
,
Rego
,
I.
,
Carreira-Garcia
,
V.
, and
Blanco
,
F. J.
,
2008
, “
Genetics in Osteoarthritis
,”
Curr. Genomics
,
9
(
8
), pp.
542
547
.10.2174/138920208786847953
21.
Valdes
,
A. M.
, and
Spector
,
T. D.
,
2011
, “
Genetic Epidemiology of Hip and Knee Osteoarthritis
,”
Nat Rev Rheumatol.
,
7
(
1
), pp.
23
32
.10.1038/nrrheum.2010.191
22.
Bleuel
,
J.
,
Zaucke
,
F.
,
Brüggemann
,
G. P.
, and
Niehoff
,
A.
,
2015
, “
Effects of Cyclic Tensile Strain on Chondrocyte Metabolism: A Systematic Review
,”
PLoS One
,
10
(
3
), p.
e0119816
.10.1371/journal.pone.0119816
23.
Wong
,
M.
,
Siegrist
,
M.
, and
Cao
,
X.
,
1999
, “
Cyclic Compression of Articular Cartilage Explants is Associated With Progressive Consolidation and Altered Expression Pattern of Extracellular Matrix Proteins
,”
Matrix Biol.
,
18
(
4
), pp.
391
399
.10.1016/S0945-053X(99)00029-3
24.
Natsu-Ume
,
T.
,
Majima
,
T.
,
Reno
,
C.
,
Shrive
,
N. G.
,
Frank
,
C. B.
, and
Hart
,
D. A.
,
2005
, “
Menisci of the Rabbit Knee Require Mechanical Loading to Maintain Homeostasis: Cyclic Hydrostatic Compression In Vitro Prevents Derepression of Catabolic Genes
,”
J. Orthop. Sci.
,
10
(
4
), pp.
396
405
.10.1007/s00776-005-0912-x
25.
Torzilli
,
P. A.
,
Bhargava
,
M.
,
Park
,
S.
, and
Chen
,
C. T. C.
,
2010
, “
Mechanical Load Inhibits IL-1 Induced Matrix Degradation in Articular Cartilage
,”
Osteoarthritis Cartilage
,
18
(
1
), pp.
97
105
.10.1016/j.joca.2009.07.012
26.
Aigner
,
T.
,
Zien
,
A.
,
Gehrsitz
,
A.
,
Gebhard
,
P. M.
, and
McKenna
,
L.
,
2001
, “
Anabolic and Catabolic Gene Expression Pattern Analysis in Normal Versus Osteoarthritic Cartilage Using Complementary DNA-Array Technology
,”
Arthritis Rheum.
,
44
(
12
), pp.
2777
2789
.10.1002/1529-0131(200112)44:12<2777::AID-ART465>3.0.CO;2-H
27.
Wolf
,
A.
,
Ackermann
,
B.
, and
Steinmeyer
,
J.
,
2006
, “
Collagen Synthesis of Articular Cartilage Explants in Response to Frequency of Cyclic Mechanical Loading
,”
Cell Tissue Res.
,
327
(
1
), pp.
155
166
.10.1007/s00441-006-0251-z
28.
Sauerland
,
K.
,
Raiss
,
R. X.
, and
Steinmeyer
,
J.
,
2003
, “
Proteoglycan Metabolism and Viability of Articular Cartilage Explants as Modulated by the Frequency of Intermittent Loading
,”
Osteoarthritis Cartilage
,
11
(
5
), pp.
343
350
.10.1016/S1063-4584(03)00007-4
29.
Steinmeyer
,
J.
,
Ackermann
,
B.
, and
Raiss
,
R. X.
,
1997
, “
Intermittent Cyclic Loading of Cartilage Explants Modulates Fibronectin Metabolism
,”
Osteoarthritis Cartilage
,
5
(
5
), pp.
331
341
.10.1016/S1063-4584(97)80037-4
30.
Nabavi-Tabrizi
,
A.
,
Turnbull
,
A.
,
Dao
,
Q.
, and
Appleyard
,
R.
,
2002
, “
Chondrocyte Damage Following Osteochondral Grafting Using Metal and Plastic Punches: Comparative Study in an Animal Model
,”
J. Orthop. Surg.
,
10
(
2
), pp.
170
172
.10.1177/230949900201000211
31.
Bellucci
,
G.
, and
Seedhom
,
B. B.
,
2001
, “
Mechanical Behaviour of Articular Cartilage Under Tensile Cyclic Load
,”
Rheumatology
,
40
(
12
), pp.
1337
1345
.10.1093/rheumatology/40.12.1337
You do not currently have access to this content.