Abstract

The mechanical impedance of intact and epidermis-peeled rat glabrous skin was studied at two sites (digit and sole) and at two frequencies (40 Hz and 250 Hz). The thicknesses of skin layers at the corresponding regions were measured histologically from intact- and peeled-skin samples in every subject. Compared to intact sole skin, digital rat skin has thicker layers and higher mechanical resistance, and it is less stiff. The resistance of the skin significantly decreased after epidermal peeling at both the digit and the sole. Furthermore, peeling caused the reactance to become positive due to inertial effects. As the frequency was increased from 40 to 250 Hz, the resistance and stiffness also increased for the intact skin, while the peeled skin showed less frictional (i.e., resistance) but more inertial (i.e., positive reactance) effects. We estimated the mechanical properties of epidermis and dermis with lumped-element models developed for both intact and peeled conditions. The models predicted that dermis has higher mass, lower stiffness, and lower resistance compared to epidermis, similar to the experimental impedance results obtained in the peeled condition which consisted mostly of dermis. The overall impedance was simulated more successfully at 40 Hz. When both frequencies are considered, the models produced consistent results for resistance in both conditions. The results imply that most of the model parameters should be frequency-dependent and suggest that mechanical properties of epidermis can be related to its thickness. These findings may help in designing artificial skin for neuroprosthetic limbs.

References

1.
Persson
,
B. N. J.
,
Kovalev
,
A.
, and
Gorb
,
S. N.
,
2013
, “
Contact Mechanics and Friction on Dry and Wet Human Skin
,”
Tribol. Lett.
,
50
(
1
), pp.
17
30
.10.1007/s11249-012-0053-2
2.
Devecioğlu
,
İ.
, and
Güçlü
,
B.
,
2013
, “
Asymmetric Response Properties of Rapidly Adapting Mechanoreceptive Fibers in the Rat Glabrous Skin
,”
Somatosens. Mot. Res.
,
30
(
1
), pp.
16
29
.10.3109/08990220.2012.732128
3.
Yıldız
,
M. Z.
, and
Güçlü
,
B.
,
2013
, “
Relationship Between Vibrotactile Detection Threshold in the Pacinian Channel and Complex Mechanical Modulus of the Human Glabrous Skin
,”
Somatosens. Mot. Res.
,
30
(
1
), pp.
37
47
.10.3109/08990220.2012.754754
4.
Wu
,
R. K. S. G.
,
Maibach
,
H. I.
, and
Gitis
,
N. V.
,
2009
, “
Tribological Studies on Skin: Measurement of the Coefficient of Friction
,”
Handbook of Cosmetic Science and Technology
,
CRC Press
, Boca Raton, FL, pp.
433
444
.https://www.taylorfrancis.com/chapters/edit/10.1201/b15273-41/tribological-studies-skinmeasurement-coefficient-friction-raja-sivamani-gabriel-wu-howard-maibach-norm-gitis
5.
Kendall
,
M. A.
,
Chong
,
Y.-F.
, and
Cock
,
A.
,
2007
, “
The Mechanical Properties of the Skin Epidermis in Relation to Targeted Gene and Drug Delivery
,”
Biomaterials
,
28
(
33
), pp.
4968
4977
.10.1016/j.biomaterials.2007.08.006
6.
Ortiz-Catalan
,
M.
,
Mastinu
,
E.
,
Sassu
,
P.
,
Aszmann
,
O.
, and
Brånemark
,
R.
,
2020
, “
Self-Contained Neuromusculoskeletal Arm Prostheses
,”
N. Engl. J. Med.
,
382
(
18
), pp.
1732
1738
.10.1056/NEJMoa1917537
7.
Osborn
,
L.
,
Nguyen
,
H.
,
Betthauser
,
J.
,
Kaliki
,
R.
, and
Thakor
,
N.
,
2016
, “
Biologically Inspired Multi-Layered Synthetic Skin for Tactile Feedback in Prosthetic Limbs
,” Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
), Orlando, FL, Aug. 16–20, pp.
4622
4625
.10.1109/EMBC.2016.7591757
8.
Gardner
,
E. P.
, and
Johnson
,
K. O.
,
2012
, “Touch,”
Principles of Neural Science
,
E. R.
Kandel
,
J. H.
Schwartz
,
T. M.
Jessell
,
S. A.
Siegelbaum
, and
A. J.
Hudspeth
, eds.,
McGraw-Hill
,
New York
, pp.
498
529
.
9.
Bolanowski
,
S. J.
, and
Pawson
,
L.
,
2003
, “
Organization of Meissner Corpuscles in the Glabrous Skin of Monkey and Cat
,”
Somatosens. Mot. Res.
,
20
(
3–4
), pp.
223
231
.10.1080/08990220310001622915
10.
Güçlü
,
B.
,
Bolanowski
,
S. J.
, and
Pawson
,
L.
,
2003
, “
End-to-End Linkage (EEL) Clustering Algorithm: A Study on the Distribution of Meissner Corpuscles in the Skin
,”
J. Comput. Neurosci.
,
15
(
1
), pp.
19
28
.10.1023/A:1024466617694
11.
Halata
,
Z.
,
1990
, “
Sensory Innervation of the Hairless and Hairy Skin in Mammals Including Humans
,”
The Primary Afferent Neuron
,
W.
Zenker
and
W.
Neuhuber
, eds.,
Springer US
, New York, pp.
19
34
.
12.
Güçlü
,
B.
,
Schepis
,
E. A.
,
Yelke
,
S.
,
Yücesoy
,
C. A.
, and
Bolanowski
,
S. J.
,
2006
, “
Ovoid Geometry of the Pacinian Corpuscle Is Not the Determining Factor for Mechanical Excitation
,”
Somatosens. Mot. Res.
,
23
(
3–4
), pp.
119
126
.10.1080/08990220600989635
13.
Bell
,
J.
,
Bolanowski
,
S.
, and
Holmes
,
M. H.
,
1994
, “
The Structure and Function of Pacinian Corpuscles: A Review
,”
Prog. Neurobiol.
,
42
(
1
), pp.
79
128
.10.1016/0301-0082(94)90022-1
14.
Quindlen
,
J. C.
,
Güçlü
,
B.
,
Schepis
,
E. A.
, and
Barocas
,
V. H.
,
2017
, “
Computational Parametric Analysis of the Mechanical Response of Structurally Varying Pacinian Corpuscles
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071012
.10.1115/1.4036603
15.
Quindlen
,
J. C.
,
Lai
,
V. K.
, and
Barocas
,
V. H.
,
2015
, “
Multiscale Mechanical Model of the Pacinian Corpuscle Shows Depth and Anisotropy Contribute to the Receptor's Characteristic Response to Indentation
,”
PLoS Comput. Biol.
,
11
(
9
), p.
e1004370
.10.1371/journal.pcbi.1004370
16.
Vega-Bermudez
,
F.
, and
Johnson
,
K. O.
,
1999
, “
Surround Suppression in the Responses of Primate SA1 and RA Mechanoreceptive Afferents Mapped With a Probe Array
,”
J. Neurophysiol.
,
81
(
6
), pp.
2711
2719
.10.1152/jn.1999.81.6.2711
17.
Wang
,
Q.
, and
Hayward
,
V.
,
2007
, “
In Vivo Biomechanics of the Fingerpad Skin Under Local Tangential Traction
,”
J. Biomech.
,
40
(
4
), pp.
851
860
.10.1016/j.jbiomech.2006.03.004
18.
Güçlü
,
B.
, and
Bolanowski
,
S. J.
,
2002
, “
Modeling Population Responses of Rapidly-Adapting Mechanoreceptive Fibers
,”
J. Comput. Neurosci.
,
12
(
3
), pp.
201
218
.10.1023/A:1016535413000
19.
Bischoff
,
J. E.
,
Arruda
,
E. M.
, and
Grosh
,
K.
,
2000
, “
Finite Element Modeling of Human Skin Using an Isotropic, Nonlinear Elastic Constitutive Model
,”
J. Biomech.
,
33
(
6
), pp.
645
652
.10.1016/S0021-9290(00)00018-X
20.
Evans
,
S. L.
, and
Holt
,
C. A.
,
2009
, “
Measuring the Mechanical Properties of Human Skin In Vivo Using Digital Image Correlation and Finite Element Modelling
,”
J. Strain Anal. Eng.
,
44
(
5
), pp.
337
345
.10.1243/03093247JSA488
21.
Delalleau
,
A.
,
Josse
,
G.
,
Lagarde
,
J. M.
,
Zahouani
,
H.
, and
Bergheau
,
J. M.
,
2008
, “
A Nonlinear Elastic Behavior to Identify the Mechanical Parameters of Human Skin In Vivo
,”
Skin Res. Technol.
,
14
(
2
), pp.
152
164
.10.1111/j.1600-0846.2007.00269.x
22.
Lokshin
,
O.
, and
Lanir
,
Y.
,
2009
, “
Viscoelasticity and Preconditioning of Rat Skin Under Uniaxial Stretch: Microstructural Constitutive Characterization
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
031009
.10.1115/1.3049479
23.
Khatyr
,
F.
,
Imberdis
,
C.
,
Vescovo
,
P.
,
Varchon
,
D.
, and
Lagarde
,
J. M.
,
2004
, “
Model of the Viscoelastic Behaviour of Skin In Vivo and Study of Anisotropy
,”
Skin Res. Technol.
,
10
(
2
), pp.
96
103
.10.1111/j.1600-0846.2004.00057.x
24.
Wu
,
J. Z.
,
Dong
,
R. G.
,
Smutz
,
W. P.
, and
Schopper
,
A. W.
,
2003
, “
Nonlinear and Viscoelastic Characteristics of Skin Under Compression: Experiment and Analysis
,”
Biomed. Mater. Eng.
,
13
(
4
), pp.
373
385
.https://content.iospress.com/articles/bio-medical-materials-and-engineering/bme270
25.
Schultz
,
G. S.
,
Ladwig
,
G.
, and
Wysocki
,
A.
,
2005
, “
Extracellular Matrix: Review of Its Roles in Acute and Chronic Wounds
,”
World Wide Wounds
,
2005
, pp.
1
18
.http://www.worldwidewounds.com/2005/august/Schultz/Extrace-Matric-Acute-Chronic-Wounds.html
26.
McGrath
,
J. A.
, and
Uitto
,
J.
,
2010
, “
Anatomy and Organization of Human Skin
,”
Rook's Textbook of Dermatology
,
T.
Burns
,
S.
Breathnach
,
N.
Cox
, and
C.
Griffiths
, eds.,
Wiley-Blackwell
,
West Sussex, UK
, pp.
3.1
3.53
.
27.
Ray
,
R. H.
, and
Doetsch
,
G. S.
,
1990
, “
Coding of Stimulus Location and Intensity in Populations of Mechanosensitive Nerve Fibers of the Raccoon: I. Single Fiber Response Properties
,”
Brain Res. Bull.
,
25
(
4
), pp.
517
532
.10.1016/0361-9230(90)90109-D
28.
Birznieks
,
I.
,
Jenmalm
,
P.
,
Goodwin
,
A. W.
, and
Johansson
,
R. S.
,
2001
, “
Encoding of Direction of Fingertip Forces by Human Tactile Afferents
,”
J. Neurosci.
,
21
(
20
), pp.
8222
8237
.10.1523/JNEUROSCI.21-20-08222.2001
29.
Jenmalm
,
P.
,
Birznieks
,
I.
,
Goodwin
,
A. W.
, and
Johansson
,
R. S.
,
2003
, “
Influence of Object Shape on Responses of Human Tactile Afferents Under Conditions Characteristic of Manipulation
,”
Eur. J. Neurosci.
,
18
(
1
), pp.
164
176
.10.1046/j.1460-9568.2003.02721.x
30.
Hendriks
,
F.
,
Brokken
,
D.
,
Oomens
,
C.
,
Bader
,
D.
, and
Baaijens
,
F.
,
2006
, “
The Relative Contributions of Different Skin Layers to the Mechanical Behavior of Human Skin In Vivo Using Suction Experiments
,”
Med. Eng. Phys.
,
28
(
3
), pp.
259
266
.10.1016/j.medengphy.2005.07.001
31.
Leyva-Mendivil
,
M. F.
,
Page
,
A.
,
Bressloff
,
N. W.
, and
Limbert
,
G.
,
2015
, “
A Mechanistic Insight Into the Mechanical Role of the Stratum Corneum During Stretching and Compression of the Skin
,”
J. Mech. Behav. Biomed. Mater.
,
49
, pp.
197
219
.10.1016/j.jmbbm.2015.05.010
32.
Zhao
,
Y.
,
Feng
,
B.
,
Lee
,
J.
,
Lu
,
N.
, and
Pierce
,
D. M.
,
2020
, “
A Multi-Layered Model of Human Skin Elucidates Mechanisms of Wrinkling in the Forehead
,”
J. Mech. Behav. Biomed. Mater.
,
105
, p.
103694
.10.1016/j.jmbbm.2020.103694
33.
Dandekar
,
K.
,
Raju
,
B. I.
, and
Srinivasan
,
M. A.
,
2003
, “
3-D Finite-Element Models of Human and Monkey Fingertips to Investigate the Mechanics of Tactile Sense
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
682
691
.10.1115/1.1613673
34.
Srinivasan
,
M.
, and
Dandekar
,
K.
,
1996
, “
An Investigation of the Mechanics of Tactile Sense Using Two-Dimensional Models of the Primate Fingertip
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
48
55
.10.1115/1.2795945
35.
Güçlü
,
B.
, and
Öztek
,
Ç.
,
2007
, “
Tactile Sensitivity of Children: Effects of Frequency, Masking, and the Non-Pacinian I Psychophysical Channel
,”
J. Exp. Child Psychol.
,
98
(
2
), pp.
113
130
.10.1016/j.jecp.2007.05.003
36.
Vardar
,
B.
, and
Güçlü
,
B.
,
2020
, “
Effects of Basal Forebrain Stimulation on the Vibrotactile Responses of Neurons From the Hindpaw Representation in the Rat SI Cortex
,”
Brain Struct. Funct.
,
225
(
6
), pp.
1761
1776
.10.1007/s00429-020-02091-w
37.
Cohen
,
J. C.
,
Makous
,
J. C.
, and
Bolanowski
,
S. J.
,
1999
, “
Under Which Conditions Do the Skin and Probe Decouple During Sinusoidal Vibrations?
,”
Exp. Brain Res.
,
129
(
2
), pp.
211
217
.10.1007/s002210050891
38.
Staricco
,
R. J.
, and
Pinkus
,
H.
,
1957
, “
Quantitative and Qualitative Data on the Pigment Cells of Adult Human Epidermis
,”
J. Invest. Dermatol.
,
28
(
1
), pp.
33
45
.10.1038/jid.1957.4
39.
Strzalkowski
,
N. D.
,
Triano
,
J. J.
,
Lam
,
C. K.
,
Templeton
,
C. A.
, and
Bent
,
L. R.
,
2015
, “
Thresholds of Skin Sensitivity Are Partially Influenced by Mechanical Properties of the Skin on the Foot Sole
,”
Physiol. Rep.
,
3
(
6
), p.
e12425
.10.14814/phy2.12425
40.
Thomas
,
V. J.
,
Patil
,
K. M.
,
Radhakrishnan
,
S.
,
Narayanamurthy
,
V.
, and
Parivalavan
,
R.
,
2003
, “
The Role of Skin Hardness, Thickness, and Sensory Loss on Standing Foot Power in the Development of Plantar Ulcers in Patients With Diabetes Mellitus—A Preliminary Study
,”
Int. J. Lower Extremity Wounds
,
2
(
3
), pp.
132
139
.10.1177/1534734603258601
41.
Kellis
,
E.
,
2001
, “
Plantar Pressure Distribution During Barefoot Standing, Walking and Landing in Preschool Boys
,”
Gait Posture
,
14
(
2
), pp.
92
97
.10.1016/S0966-6362(01)00129-1
42.
Robinson
,
C. C.
,
Balbinot
,
L. F.
,
Silva
,
M. F.
,
Achaval
,
M.
, and
Zaro
,
M. A.
,
2013
, “
Plantar Pressure Distribution Patterns of Individuals With Prediabetes in Comparison With Healthy Individuals and Individuals With Diabetes
,”
J. Diabetes Sci. Technol.
,
7
(
5
), pp.
1113
1121
.10.1177/193229681300700503
43.
Deepashini
,
H.
,
Omar
,
B.
,
Paungmali
,
A.
,
Amaramalar
,
N.
,
Ohnmar
,
H.
, and
Leonard
,
J.
,
2014
, “
An Insight Into the Plantar Pressure Distribution of the Foot in Clinical Practice: Narrative Review
,”
Pol. Ann. Med.
,
21
(
1
), pp.
51
56
.10.1016/j.poamed.2014.03.003
44.
David-Jürgens
,
M.
,
Churs
,
L.
,
Berkefeld
,
T.
,
Zepka
,
R. F.
, and
Dinse
,
H. R.
,
2008
, “
Differential Effects of Aging on Fore- and Hindpaw Maps of Rat Somatosensory Cortex
,”
PLoS One
,
3
(
10
), p.
e3399
.10.1371/journal.pone.0003399
45.
Nurse
,
M. A.
, and
Nigg
,
B. M.
,
1999
, “
Quantifying a Relationship Between Tactile and Vibration Sensitivity of the Human Foot With Plantar Pressure Distributions During Gait
,”
Clin. Biomech.
,
14
(
9
), pp.
667
672
.10.1016/S0268-0033(99)00020-0
46.
Allain
,
J.-M.
,
Lynch
,
B.
, and
Schanne-Klein
,
M.-C.
,
2019
, “
Multiscale Characterisation of Skin Mechanics Through In Situ Imaging
,”
Skin Biophysics: From Experimental Characterisation to Advanced Modelling
,
G.
Limbert
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
235
263
.
47.
Yuan
,
Y.
, and
Verma
,
R.
,
2006
, “
Measuring Microelastic Properties of Stratum Corneum
,”
Colloids Surf., B
,
48
(
1
), pp.
6
12
.10.1016/j.colsurfb.2005.12.013
48.
Park
,
A. C.
, and
Baddiel
,
C. B.
,
1972
, “
Rheology of Stratum Corneum—I: A Molecular Interpretation of the Stress-Strain Curve
,”
J. Soc. Cosmet. Chem.
,
23
, pp.
3
12
.https://library.scconline.org/v023n01/3
49.
Moore
,
T. J.
,
1970
, “
A Survey of the Mechanical Characteristics of Skin and Tissue in Response to Vibratory Stimulation
,”
IEEE Trans. Hum.-Mach. Syst.
,
11
(
1
), pp.
79
84
.10.1109/TMMS.1970.299966
50.
Lundstrom
,
R.
,
1984
, “
Local Vibrations—Mechanical Impedance of the Human Hand's Glabrous Skin
,”
J. Biomech.
,
17
(
2
), pp.
137
144
.10.1016/0021-9290(84)90131-3
51.
Wu
,
J. Z.
,
Dong
,
R. G.
, and
Welcome
,
D. E.
,
2006
, “
Analysis of the Point Mechanical Impedance of Fingerpad in Vibration
,”
Med. Eng. Phys.
,
28
(
8
), pp.
816
826
.10.1016/j.medengphy.2005.11.013
52.
Mann
,
N. A.
, and
Griffin
,
M. J.
,
1996
, “
Effect of Contact Conditions on the Mechanical Impedance of the Finger
,”
Cent. Eur. J. Public Health
,
4
(
1
), pp.
46
49
.https://pubmed.ncbi.nlm.nih.gov/8996670/
53.
Jindrich
,
D. L.
,
Zhou
,
Y.
,
Becker
,
T.
, and
Dennerlein
,
J. T.
,
2003
, “
Non-Linear Viscoelastic Models Predict Fingertip Pulp Force-Displacement Characteristics During Voluntary Tapping
,”
J. Biomech.
,
36
(
4
), pp.
497
503
.10.1016/S0021-9290(02)00438-4
54.
Pawluk
,
D. T.
, and
Howe
,
R. D.
,
1999
, “
Dynamic Lumped Element Response of the Human Fingerpad
,”
ASME J. Biomech. Eng.
,
121
(
2
), pp.
178
183
.10.1115/1.2835100
55.
Crichton
,
M. L.
,
Donose
,
B. C.
,
Chen
,
X.
,
Raphael
,
A. P.
,
Huang
,
H.
, and
Kendall
,
M. A. F.
,
2011
, “
The Viscoelastic, Hyperelastic and Scale Dependent Behaviour of Freshly Excised Individual Skin Layers
,”
Biomaterials
,
32
(
20
), pp.
4670
4681
.10.1016/j.biomaterials.2011.03.012
56.
Sopher
,
R.
, and
Gefen
,
A.
,
2011
, “
Effects of Skin Wrinkles, Age and Wetness on Mechanical Loads in the Stratum Corneum as Related to Skin Lesions
,”
Med. Biol. Eng. Comput.
,
49
(
1
), pp.
97
105
.10.1007/s11517-010-0673-3
57.
Ventre
,
M.
,
Mollica
,
F.
, and
Netti
,
P. A.
,
2009
, “
The Effect of Composition and Microstructure on the Viscoelastic Properties of Dermis
,”
J. Biomech.
,
42
(
4
), pp.
430
435
.10.1016/j.jbiomech.2008.12.004
58.
Bancelin
,
S.
,
Lynch
,
B.
,
Bonod-Bidaud
,
C.
,
Ducourthial
,
G.
,
Psilodimitrakopoulos
,
S.
,
Dokládal
,
P.
,
Allain
,
J.-M.
,
Schanne-Klein
,
M.-C.
, and
Ruggiero
,
F.
,
2015
, “
Ex Vivo Multiscale Quantitation of Skin Biomechanics in Wild-Type and Genetically-Modified Mice Using Multiphoton Microscopy
,”
Sci. Rep.
,
5
(
1
), p.
17635
.10.1038/srep17635
You do not currently have access to this content.