Abstract

Treadmill training is a common intervention to promote healthy walking function for individuals with pathological gait. However, because of the heterogeneity of many patient populations, determining how an individual will respond to new treadmill protocols may require extensive trial and error, causing increased patient fatigue. The purpose of this study was to develop and validate a framework for predictive simulation of treadmill gait, which may be used in the design of treadmill training protocols. This was accomplished through three steps: predict motion of a simple model of a block relative to a treadmill, create a predictive framework to estimate gait with a two-dimensional (2D) lower limb musculoskeletal model on a treadmill, and validate the framework by comparing predicted kinematics, kinetics, and spatiotemporal parameters across three belts speeds and between speed-matched overground and treadmill predictive simulations. Predicted states and ground reaction forces for the block-treadmill model were consistent with rigid body dynamics, and lessons learned regarding ground contact model and treadmill motion definition were applied to the gait model. Treadmill simulations at 0.7, 1.2, and 1.8 m/s belt speeds resulted in predicted sagittal plane joint angles, ground reaction forces, step length, and step time that closely matched experimental data at similar speeds. Predicted speed-matched overground and treadmill simulations resulted in small root-mean-square error (RMSE) values within standard deviations for healthy gait. These results suggest that this predictive simulation framework is valid and can be used to estimate gait adaptations to various treadmill training protocols.

References

1.
Soni
,
S.
, and
Lamontagne
,
A.
,
2020
, “
Characterization of Speed Adaptation While Walking on an Omnidirectional Treadmill
,”
J. Neuroeng. Rehabil.
,
17
(
1
), pp.
1
11
.10.1186/s12984-020-00787-y
2.
Knarr
,
B. A.
,
Reisman
,
D. S.
,
Binder-Macleod
,
S. A.
, and
Higginson
,
J. S.
,
2013
, “
Understanding Compensatory Strategies for Muscle Weakness During Gait by Simulating Activation Deficits Seen Post-Stroke
,”
Gait Posture
,
38
(
2
), pp.
270
275
.10.1016/j.gaitpost.2012.11.027
3.
Stanhope
,
V. A.
,
Knarr
,
B. A.
,
Reisman
,
D. S.
, and
Higginson
,
J. S.
,
2014
, “
Frontal Plane Compensatory Strategies Associated With Self-Selected Walking Speed in Individuals Post-Stroke
,”
Clin. Biomech.
,
29
(
5
), pp.
518
522
.10.1016/j.clinbiomech.2014.03.013
4.
Hsiao
,
H.
,
Awad
,
L. N.
,
Palmer
,
J. A.
,
Higginson
,
J. S.
, and
Binder-Macleod
,
S. A.
,
2016
, “
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke
,”
Neurorehabil. Neural Repair
,
30
(
8
), pp.
743
752
.10.1177/1545968315624780
5.
Cakit
,
B. D.
,
Saracoglu
,
M.
,
Genc
,
H.
,
Erdem
,
H. R.
, and
Inan
,
L.
,
2007
, “
The Effects of Incremental Speed-Dependent Treadmill Training on Postural Instability and Fear of Falling in Parkinson's Disease
,”
Clin. Rehabil.
,
21
(
8
), pp.
698
705
.10.1177/0269215507077269
6.
Lamontagne
,
A.
, and
Fung
,
J.
,
2004
, “
Faster is Better: Implications for Speed-Intensive Gait Training After Stroke
,”
Stroke
,
35
(
11
), pp.
2543
2548
.10.1161/01.STR.0000144685.88760.d7
7.
Reisman
,
D. S.
,
Rudolph
,
K. S.
, and
Farquhar
,
W. B.
,
2009
, “
Influence of Speed on Walking Economy Poststroke
,”
Neurorehabil. Neural Repair
,
23
(
6
), pp.
529
534
.10.1177/1545968308328732
8.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2008
, “
Muscle Contributions to Support and Progression Over a Range of Walking Speeds
,”
J. Biomech
,
41
(
15
), pp.
3243
3252
.10.1016/j.jbiomech.2008.07.031
9.
Peterson
,
C. L.
,
Hall
,
A. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2010
, “
Pre-Swing Deficits in Forward Propulsion, Swing Initiation and Power Generation by Individual Muscles During Hemiparetic Walking
,”
J. Biomech.
,
43
(
12
), pp.
2348
2355
.10.1016/j.jbiomech.2010.04.027
10.
Hall
,
A. L.
,
Peterson
,
C. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2011
, “
Relationships Between Muscle Contributions to Walking Subtasks and Functional Walking Status in Persons With Post-Stroke Hemiparesis
,”
Clin. Biomech.
,
26
(
5
), pp.
509
515
.10.1016/j.clinbiomech.2010.12.010
11.
Neptune
,
R. R.
,
Sasaki
,
K.
, and
Kautz
,
S. A.
,
2008
, “
The Effect of Walking Speed on Muscle Function and Mechanical Energetics
,”
Gait Posture
,
28
(
1
), pp.
135
143
.10.1016/j.gaitpost.2007.11.004
12.
Falisse
,
A.
,
Serrancolí
,
G.
,
Dembia
,
C. L.
,
Gillis
,
J.
,
Jonkers
,
I.
, and
De Groote
,
F.
,
2019
, “
Rapid Predictive Simulations With Complex Musculoskeletal Models Suggest That Diverse Healthy and Pathological Human Gaits Can Emerge From Similar Control Strategies
,”
J. R. Soc. Interface
,
16
(
157
), p.
20190402
.10.1098/rsif.2019.0402
13.
Sauder
,
N. R.
,
Meyer
,
A. J.
,
Allen
,
J. L.
,
Ting
,
L. H.
,
Kesar
,
T. M.
, and
Fregly
,
B. J.
,
2019
, “
Computational Design of FastFES Treatment to Improve Propulsive Force Symmetry During Post-Stroke Gait: A Feasibility Study
,”
Front. Neurorobot.
,
13
(
80
), pp.
1
21
.10.3389/fnbot.2019.00080
14.
Dembia
,
C. L.
,
Bianco
,
N. A.
,
Falisse
,
A.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2020
, “
OpenSim Moco: Musculoskeletal Optimal Control
,”
PLoS Comput. Biol.
,
16
(
12
), pp.
1
21
.10.1371/journal.pcbi.1008493
15.
Falisse
,
A.
,
Pitto
,
L.
,
Kainz
,
H.
,
Hoang
,
H.
,
Wesseling
,
M.
,
Van Rossom
,
S.
,
Papageorgiou
,
E.
,
Bar-On
,
L.
,
Hallemans
,
A.
,
Desloovere
,
K.
,
Molenaers
,
G.
,
Van Campenhout
,
A.
,
De Groote
,
F.
, and
Jonkers
,
I.
,
2020
, “
Physics-Based Simulations to Predict the Differential Effects of Motor Control and Musculoskeletal Deficits on Gait Dysfunction in Cerebral Palsy: A Retrospective Case Study
,”
Front. Hum. Neurosci.
,
14
(
40
), pp.
1
17
.10.3389/fnhum.2020.00040
16.
Todorov
,
E.
, and
Li
,
W.
,
2003
, “
Optimal Control Methods Suitable for Biomechanical Systems
,”
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Cancun, Mexico, Sept. 17–21, Vol.
2
, pp.
1758
1761
.10.1109/IEMBS.2003.1279748
17.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.10.1016/j.jbiomech.2009.12.012
18.
De Groote
,
F.
,
Kinney
,
A. L.
,
Rao
,
A. V.
, and
Fregly
,
B. J.
,
2016
, “
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2922
2936
.10.1007/s10439-016-1591-9
19.
Umberger
,
B. R.
, and
Miller
,
R. H.
,
2017
, “
Optimal Control Modeling of Human Movement
,”
Handbook of Human Motion
, Springer International Publishing, New York.10.1007/978-3-319-30808-1_177-1
20.
Kelly
,
M.
,
2017
, “
An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation
,”
SIAM Rev.
,
59
(
4
), pp.
849
904
.10.1137/16M1062569
21.
Koelewijn
,
A. D.
,
Dorschky
,
E.
, and
van den Bogert
,
A. J.
,
2018
, “
A Metabolic Energy Expenditure Model With a Continuous First Derivative and Its Application to Predictive Simulations of Gait
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
8
), pp.
521
531
.10.1080/10255842.2018.1490954
22.
De Groote
,
F.
, and
Falisse
,
A.
,
2021
, “
Perspective on Musculoskeletal Modelling and Predictive Simulations of Human Movement to Assess the Neuromechanics of Gait
,”
Proc. R. Soc. B Biol. Sci.
,
288
(
1946
), p.
20202432
.10.1098/rspb.2020.2432
23.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
24.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
25.
Seth
,
A.
,
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Habib
,
A.
,
Dembia
,
C. L.
,
Dunne
,
J. J.
,
Ong
,
C. F.
,
DeMers
,
M. S.
,
Rajagopal
,
A.
,
Millard
,
M.
,
Hamner
,
S. R.
,
Arnold
,
E. M.
,
Yong
,
J. R.
,
Lakshmikanth
,
S. K.
,
Sherman
,
M. A.
,
Ku
,
J. P.
, and
Delp
,
S. L.
,
2018
, “
OpenSim: Simulating Musculoskeletal Dynamics and Neuromuscular Control to Study Human and Animal Movement
,”
PLoS Comput. Biol.
,
14
(
7
), p.
e1006223
.10.1371/journal.pcbi.1006223
26.
Sherman
,
M. A.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2011
, “
Simbody: Multibody Dynamics for Biomedical Research
,”
Procedia IUTAM
,
2
, pp.
241
261
.10.1016/j.piutam.2011.04.023
27.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
28.
Lee
,
L. F.
, and
Umberger
,
B. R.
,
2016
, “
Generating Optimal Control Simulations of Musculoskeletal Movement Using OpenSim and MATLAB
,”
Peer J.
,
4
(
1
), p.
e1638
.10.7717/peerj.1638
29.
Fukuchi
,
C. A.
,
Fukuchi
,
R. K.
, and
Duarte
,
M.
,
2019
, “
Effects of Walking Speed on Gait Biomechanics in Healthy Participants: A Systematic Review and Meta-Analysis
,”
Syst. Rev.
,
8
(
1
), pp.
153
164
.10.1186/s13643-019-1063-z
30.
Riley
,
P. O.
,
Paolini
,
G.
,
Della Croce
,
U.
,
Paylo
,
K. W.
, and
Kerrigan
,
D. C.
,
2007
, “
A Kinematic and Kinetic Comparison of Overground and Treadmill Walking in Healthy Subjects
,”
Gait Posture
,
26
(
1
), pp.
17
24
.10.1016/j.gaitpost.2006.07.003
31.
Song
,
J. L.
, and
Hidler
,
J.
,
2008
, “
Biomechanics of Overground vs. Treadmill Walking in Healthy Individuals
,”
J. Appl. Physiol.
,
104
(
3
), pp.
747
755
.10.1152/japplphysiol.01380.2006
32.
Perry
,
J.
,
1992
, Gait Analysis: Normal and Pathological Function, Slack Incorporated, Thorofare, NJ.
33.
Hicks
,
J. L.
,
Uchida
,
T. K.
,
Seth
,
A.
,
Rajagopal
,
A.
, and
Delp
,
S. L.
,
2015
, “
Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020905
.10.1115/1.4029304
34.
Riley
,
P. O.
,
Della Croce
,
U.
, and
Kerrigan
,
D. C.
,
2001
, “
Propulsive Adaptation to Changing Gait Speed
,”
J. Biomech.
,
34
(
2
), pp.
197
202
.10.1016/S0021-9290(00)00174-3
35.
Dubbeldam
,
R.
,
Buurke
,
J. H.
,
Simons
,
C.
,
Groothuis-Oudshoorn
,
C. G. M.
,
Baan
,
H.
,
Nene
,
A. V.
, and
Hermens
,
H. J.
,
2010
, “
The Effects of Walking Speed on Forefoot, Hindfoot and Ankle Joint Motion
,”
Clin. Biomech.
,
25
(
8
), pp.
796
801
.10.1016/j.clinbiomech.2010.06.007
36.
Fukuchi
,
C. A.
,
Fukuchi
,
R. K.
, and
Duarte
,
M.
,
2018
, “
A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals
,”
Peer J.
,
6
(
4
), p.
e4640
.10.7717/peerj.4640
37.
Nilsson
,
J.
, and
Thorstensson
,
A.
,
1989
, “
Ground Reaction Forces at Different Speeds of Human Walking and Running
,”
Acta Physiol. Scand.
,
136
(
2
), pp.
217
227
.10.1111/j.1748-1716.1989.tb08655.x
38.
Lewek
,
M. D.
,
2011
, “
The Influence of Body Weight Support on Ankle Mechanics During Treadmill Walking
,”
J. Biomech.
,
44
(
1
), pp.
128
133
.10.1016/j.jbiomech.2010.08.037
39.
Wang
,
X.
,
Ma
,
Y.
,
Hou
,
B. Y.
, and
Lam
,
W. K.
,
2017
, “
Influence of Gait Speeds on Contact Forces of Lower Limbs
,”
J. Healthcare Eng.
,
2017
(
6375976
), pp.
1
6
.10.1155/2017/6375976
You do not currently have access to this content.