Abstract

In this paper, a computationally efficient model-based method for determining patient-specific optimal acetabular cup alignment for total hip arthroplasty (THA) is presented. The proposed algorithm minimizes the risk of implant impingement and edge-loading, which are reported as the major causes of hip dislocation following THA. First, by using motion capture data recorded from the patient performing different daily activities, the hip contact force and the relative orientation of the femur and pelvis are calculated by a musculoskeletal model. Then, by defining two quantitative indices, i.e., angular impingement distance and angular edge-loading distance (AED), the risk of impingement and edge-loading are assessed for a wide range of cup alignments. Finally, three optimization criteria are introduced to estimate the optimal cup alignment with a tradeoff between the risk of impingement and edge loading. The results show that patient-specific characteristics such as pelvic tilt could significantly change the optimal cup alignment, especially the value of cup anteversion. Therefore, in some cases, the well-known Lewinnek safe zone may not be optimal, or even safe. Unlike other dynamic model-based methods, in this work, the need for force plate measurements is eliminated by estimating the ground reaction forces and moments, which makes this method more practical and cost-efficient. Furthermore, the low computational complexity due to analytical formulas makes this method suitable for both pre-operative and intra-operative planning.

References

1.
Birrell
,
F.
,
Johnell
,
O.
, and
Silman
,
A.
,
1999
, “
Projecting the Need for Hip Replacement Over the Next Three Decades: Influence of Changing Demography and Threshold for Surgery
,”
Ann. Rheum. Dis.
,
58
(
9
), pp.
569
572
.10.1136/ard.58.9.569
2.
Canadian Institute For Health Information
,
2018
, “
Hip and Knee Replacements in Canada, 2016–2017: Canadian Joint Replacement Registry Annual Report
,” Canadian Institute For Health Information, Ottawa, ON, Canada, Report.https://secure.cihi.ca/free_products/cjrr-annualreport- 2018-en.pdf
3.
Biedermann
,
R.
,
Tonin
,
A.
,
Krismer
,
M.
,
Rachbauer
,
F.
,
Eibl
,
G.
, and
Stöckl
,
B.
,
2005
, “
Reducing the Risk of Dislocation After Total Hip Arthroplasty: The Effect of Orientation of the Acetabular Component
,”
J. Bone Jt. Surg. Br. Vol.
,
87
(
6
), pp.
762
769
.10.1302/0301-620X.87B6.14745
4.
Dargel
,
J.
,
Oppermann
,
J.
,
Brüggemann
,
G.-P.
, and
Eysel
,
P.
,
2014
, “
Dislocation Following Total Hip Replacement
,”
Dtsch. Ärzteblatt Int.
,
111
(
51–52
), p.
884
.10.3238/arztebl.2014.0884
5.
Lewinnek
,
G. E.
,
Lewis
,
J.
,
Tarr
,
R.
,
Compere
,
C.
, and
Zimmerman
,
J.
,
1978
, “
Dislocations After Total Hip-Replacement Arthroplasties
,”
J. Bone Jt. Surg.
,
60
(
2
), pp.
217
220
.10.2106/00004623-197860020-00014
6.
Abdel
,
M. P.
,
Von Roth
,
P.
,
Jennings
,
M. T.
,
Hanssen
,
A. D.
, and
Pagnano
,
M. W.
,
2016
, “
What Safe Zone? The Vast Majority of Dislocated THAs Are Within the Lewinnek Safe Zone for Acetabular Component Position
,”
Clin. Orthop. Relat. Res.®
,
474
(
2
), pp.
386
391
.10.1007/s11999-015-4432-5
7.
Esposito
,
C. I.
,
Gladnick
,
B. P.
,
Lee
,
Y-y.
,
Lyman
,
S.
,
Wright
,
T. M.
,
Mayman
,
D. J.
, and
Padgett
,
D. E.
,
2015
, “
Cup Position Alone Does Not Predict Risk of Dislocation After Hip Arthroplasty
,”
J. Arthroplasty
,
30
(
1
), pp.
109
113
.10.1016/j.arth.2014.07.009
8.
Bohannon
,
R. W.
,
Bubela
,
D. J.
,
Magasi
,
S. R.
,
Wang
,
Y.-C.
, and
Gershon
,
R. C.
,
2010
, “
Sit-to-Stand Test: Performance and Determinants Across the Age-Span
,”
Isokinet. Exerc. Sci.
,
18
(
4
), pp.
235
240
.10.3233/IES-2010-0389
9.
Sariali
,
E.
,
Stewart
,
T.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2012
, “
Effect of Cup Abduction Angle and Head Lateral Microseparation on Contact Stresses in Ceramic-on-Ceramic Total Hip Arthroplasty
,”
J. Biomech.
,
45
(
2
), pp.
390
393
.10.1016/j.jbiomech.2011.10.033
10.
Mak
,
M.
,
Jin
,
Z.
,
Fisher
,
J.
, and
Stewart
,
T. D.
,
2011
, “
Influence of Acetabular Cup Rim Design on the Contact Stress During Edge Loading in Ceramic-on-Ceramic Hip Prostheses
,”
J. Arthroplasty
,
26
(
1
), pp.
131
136
.10.1016/j.arth.2009.10.019
11.
Meng
,
Q.
,
Wang
,
J.
,
Yang
,
P.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2015
, “
The Lubrication Performance of the Ceramic-on-Ceramic Hip Implant Under Starved Conditions
,”
J. Mech. Behav. Biomed. Mater.
,
50
, pp.
70
76
.10.1016/j.jmbbm.2015.06.001
12.
Mak
,
M.
, and
Jin
,
Z.
,
2002
, “
Analysis of Contact Mechanics in Ceramic-on-Ceramic Hip Joint Replacements
,”
Proc. Inst. Mech. Eng. Part H
,
216
(
4
), pp.
231
236
.10.1243/09544110260138718
13.
Elkins
,
J. M.
,
O'Brien
,
M. K.
,
Stroud
,
N. J.
,
Pedersen
,
D. R.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
,
2011
, “
Hard-on-Hard Total Hip Impingement Causes Extreme Contact Stress Concentrations
,”
Clin. Orthop. Relat. Res.
,
469
(
2
), pp.
454
463
.10.1007/s11999-010-1632-x
14.
Morlock
,
M. M.
,
Bishop
,
N.
,
Zustin
,
J.
,
Hahn
,
M.
,
Rüther
,
W.
, and
Amling
,
M.
,
2008
, “
Modes of Implant Failure After Hip Resurfacing: Morphological and Wear Analysis of 267 Retrieval Specimens
,”
JBJS
,
90
(
Suppl_3
), pp.
89
95
.10.2106/JBJS.H.00621
15.
Elkins
,
J. M.
,
Pedersen
,
D. R.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
,
2012
, “
Fracture Propagation Propensity of Ceramic Liners During Impingement-Subluxation: A Finite Element Exploration
,”
J. Arthroplasty
,
27
(
4
), pp.
520
526
.10.1016/j.arth.2011.06.023
16.
Al-Hajjar
,
M.
,
Leslie
,
I. J.
,
Tipper
,
J.
,
Williams
,
S.
,
Fisher
,
J.
, and
Jennings
,
L. M.
,
2010
, “
Effect of Cup Inclination Angle During Microseparation and Rim Loading on the Wear of Biolox® Delta Ceramic-on-Ceramic Total Hip Replacement
,”
J. Biomed. Mater. Res. Part B
,
95B
(
2
), pp.
263
268
.10.1002/jbm.b.31708
17.
Hua
,
X.
,
Li
,
J.
,
Jin
,
Z.
, and
Fisher
,
J.
,
2016
, “
The Contact Mechanics and Occurrence of Edge Loading in Modular Metal-on-Polyethylene Total Hip Replacement During Daily Activities
,”
Med. Eng. Phys.
,
38
(
6
), pp.
518
525
.10.1016/j.medengphy.2016.03.004
18.
Pierrepont
,
J.
,
Yang
,
L.
,
Arulampalam
,
J.
,
Stambouzou
,
C.
,
Miles
,
B.
, and
Li
,
Q.
,
2018
, “
The Effect of Seated Pelvic Tilt on Posterior Edge-Loading in Total Hip Arthroplasty: A Finite Element Investigation
,”
Proc. Inst. Mech. Eng. Part H
,
232
(
3
), pp.
241
248
.10.1177/0954411917752028
19.
Pierrepont
,
J. W.
,
Stambouzou
,
C. Z.
,
Miles
,
B. P.
,
O'Connor
,
P. B.
,
Walter
,
L.
,
Ellis
,
A.
,
Molnar
,
R.
,
Baré
,
J. V.
,
Solomon
,
M.
,
McMahon
,
S.
,
Shimmin
,
A.
, and
Marel
,
E.
,
2016
, “
Patient Specific Component Alignment in Total Hip Arthroplasty
,”
Reconstr. Rev.
,
6
(
4
), pp.
27
33
.10.15438/rr.6.4.148
20.
Norman-Gerum
,
V.
, and
McPhee
,
J.
,
2018
, “
Constrained Dynamic Optimization of Sit-to-Stand Motion Driven by Bézier Curves
,”
ASME J. Biomech. Eng.
,
140
(
12
), p.
121011
.10.1115/1.4041527
21.
Hsu
,
J.
,
De La Fuente
,
M.
, and
Radermacher
,
K.
,
2017
, “
Multi-Dimensional Range-of-Motion-Based Safe Zone for Patient-Specific Total Hip Arthroplasty
,”
CAOS
,
1
, pp.
175
180
.https://easychair.org/publications/open/JdN
22.
DiGioia
,
A. M.
, III
,
Hafez
,
M. A.
,
Jaramaz
,
B.
,
Levison
,
T. J.
, and
Moody
,
J. E.
,
2006
, “
Functional Pelvic Orientation Measured From Lateral Standing and Sitting Radiographs
,”
Clin. Orthop. Relat. Res.
,
453
, pp.
272
276
.10.1097/01.blo.0000238862.92356.45
23.
Kanawade
,
V.
,
Dorr
,
L. D.
, and
Wan
,
Z.
,
2014
, “
Predictability of Acetabular Component Angular Change With Postural Shift From Standing to Sitting Position
,”
JBJS
,
96
(
12
), pp.
978
986
.10.2106/JBJS.M.00765
24.
Nishihara
,
S.
,
Sugano
,
N.
,
Nishii
,
T.
,
Ohzono
,
K.
, and
Yoshikawa
,
H.
,
2003
, “
Measurements of Pelvic Flexion Angle Using Three-Dimensional Computed Tomography
,”
Clin. Orthop. Relat. Res.
,
411
, pp.
140
151
.10.1097/01.blo.0000069891.31220.fd
25.
Babisch
,
J. W.
,
Layher
,
F.
, and
Amiot
,
L.-P.
,
2008
, “
The Rationale for Tilt-Adjusted Acetabular Cup Navigation
,”
JBJS
,
90
(
2
), pp.
357
365
.10.2106/JBJS.F.00628
26.
Lembeck
,
B.
,
Mueller
,
O.
,
Reize
,
P.
, and
Wuelker
,
N.
,
2005
, “
Pelvic Tilt Makes Acetabular Cup Navigation Inaccurate
,”
Acta Orthop.
,
76
(
4
), pp.
517
523
.10.1080/17453670510041501
27.
Barrack
,
R. L.
,
Lavernia
,
C.
,
Ries
,
M.
,
Thornberry
,
R.
, and
Tozakoglou
,
E.
,
2001
, “
Virtual Reality Computer Animation of the Effect of Component Position and Design on Stability After Total Hip Arthroplasty
,”
Orthop. Clin.
,
32
(
4
), pp.
569
577
.10.1016/S0030-5898(05)70227-3
28.
Elkins
,
J. M.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
,
2015
, “
The 2014 Frank Stinchfield Award: The “Landing Zone'for Wear and Stability in Total Hip Arthroplasty is Smaller Than We Thought: A Computational Analysis
,”
Clin. Orthop. Relat. Res.
,
473
(
2
), pp.
441
452
.10.1007/s11999-014-3818-0
29.
McCollum
,
D. E.
, and
Gray
,
W. J.
,
1990
, “
Dislocation After Total Hip Arthroplasty. Causes and Prevention
,”
Clin. Orthop. Relat. Res.
, 261, pp.
159
170
.https://journals.lww.com/clinorthop/Abstract/1990/12000/Dislocation_After_Total_Hip_Arthroplasty_Causes.19.aspx
30.
Pedersen
,
A. B.
,
Johnsen
,
S. P.
,
Overgaard
,
S.
,
Søballe
,
K.
,
Sørensen
,
H. T.
, and
Lucht
,
U.
,
2005
, “
Total Hip Arthroplasty in Denmark: Incidence of Primary Operations and Revisions During 1996–2002 and Estimated Future Demands
,”
Acta Orthop.
,
76
(
2
), pp.
182
189
.10.1080/00016470510030553
31.
Widmer
,
K.-H.
, and
Zurfluh
,
B.
,
2004
, “
Compliant Positioning of Total Hip Components for Optimal Range of Motion
,”
J. Orthop. Res.
,
22
(
4
), pp.
815
821
.10.1016/j.orthres.2003.11.001
32.
Yoshimine
,
F.
,
2006
, “
The Safe-Zones for Combined Cup and Neck Anteversions That Fulfill the Essential Range of Motion and Their Optimum Combination in Total Hip Replacements
,”
J. Biomech.
,
39
(
7
), pp.
1315
1323
.10.1016/j.jbiomech.2005.03.008
33.
Mellon
,
S. J.
,
Grammatopoulos
,
G.
,
ersen
,
M. S.
,
Pandit
,
H. G.
,
Gill
,
H. S.
, and
Murray
,
D. W.
,
2015
, “
Optimal Acetabular Component Orientation Estimated Using Edge-Loading and Impingement Risk in Patients With Metal-on-Metal Hip Resurfacing Arthroplasty
,”
J. Biomech.
,
48
(
2
), pp.
318
323
.10.1016/j.jbiomech.2014.11.027
34.
Widmer
,
K.-H.
,
2007
, “
Containment Versus Impingement: Finding a Compromise for Cup Placement in Total Hip Arthroplasty
,”
Int. Orthop.
,
31
(
S1
), pp.
29
33
.10.1007/s00264-007-0429-3
35.
Kessler
,
O.
,
Patil
,
S.
,
Stefan
,
W.
,
Mayr
,
E.
,
Colwell
,
C. W.
, and
D'Lima
,
D. D.
,
2008
, “
Bony Impingement Affects Range of Motion After Total Hip Arthroplasty: A Subject-Specific Approach
,”
J. Orthop. Res.
,
26
(
4
), pp.
443
452
.10.1002/jor.20541
36.
MoCap
, 2021, “
Carnegie Mellon University Graphics Lab Motion Capture Database
,” Carnegie Mellon University Graphics Lab Motion Capture Database, Pittsburgh, PA, accessed Nov. 11, 2021, http://mocap.cs.cmu.edu
37.
Huffman
,
K. D.
,
Sanford
,
B. A.
,
Zucker-Levin
,
A. R.
,
Williams
,
J. L.
, and
Mihalko
,
W. M.
,
2015
, “
Increased Hip Abduction in High Body Mass Index Subjects During Sit-to-Stand
,”
Gait Posture
,
41
(
2
), pp.
640
645
.10.1016/j.gaitpost.2015.01.014
38.
Ghaffari
,
M.
,
Nickmanesh
,
R.
,
Tamannaee
,
N.
, and
Farahmand
,
F.
,
2012
, “
The Impingement-Dislocation Risk of Total Hip Replacement: Effects of Cup Orientation and Patient Maneuvers
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE
, San Diego, CA, Aug. 28–Sept. 1, pp.
6801
6804
.10.1109/EMBC.2012.6347556
39.
Yamaguchi
,
G. T.
,
2005
,
Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions
,
Springer Science & Business Media
, Berlin.https://link.springer.com/book/10.1007/978-0-387-28750-8
40.
Fluit
,
R.
,
ersen
,
M. S.
,
Kolk
,
S.
,
Verdonschot
,
N.
, and
Koopman
,
H. F.
,
2014
, “
Prediction of Ground Reaction Forces and Moments During Various Activities of Daily Living
,”
J. Biomech.
,
47
(
10
), pp.
2321
2329
.10.1016/j.jbiomech.2014.04.030
41.
Skals
,
S.
,
Jung
,
M. K.
,
Damsgaard
,
M.
, and
ersen
,
M. S.
,
2017
, “
Prediction of Ground Reaction Forces and Moments During Sports-Related Movements
,”
Multibody Syst. Dyn.
,
39
(
3
), pp.
175
195
.10.1007/s11044-016-9537-4
42.
Karatsidis
,
A.
,
Bellusci
,
G.
,
Schepers
,
H. M.
,
De Zee
,
M.
,
ersen
,
M. S.
, and
Veltink
,
P. H.
,
2016
, “
Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture
,”
Sensors
,
17
(
12
), p.
75
.10.3390/s17010075
43.
Karatsidis
,
A.
,
Jung
,
M.
,
Schepers
,
H. M.
,
Bellusci
,
G.
,
De Zee
,
M.
,
Veltink
,
P. H.
, and
ersen
,
M. S.
,
2019
, “
Musculoskeletal Model-Based Inverse Dynamic Analysis Under Ambulatory Conditions Using Inertial Motion Capture
,”
Med. Eng. Phys.
,
65
, pp.
68
77
.10.1016/j.medengphy.2018.12.021
44.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
DeMers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
45.
Hsu
,
J.
,
De la Fuente
,
M.
, and
Radermacher
,
K.
,
2019
, “
Calculation of Impingement-Free Combined Cup and Stem Alignments Based on the Patient-Specific Pelvic Tilt
,”
J. Biomech.
,
82
, pp.
193
203
.10.1016/j.jbiomech.2018.10.020
46.
Murray
,
D.
,
1993
, “
The Definition and Measurement of Acetabular Orientation
,”
J. Bone Jt. Surg. Br. Vol.
,
75-B
(
2
), pp.
228
232
.10.1302/0301-620X.75B2.8444942
47.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D’Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
, 35(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
48.
Bergmann
,
G.
,
Bender
,
A.
,
Dymke
,
J.
,
Duda
,
G.
, and
Damm
,
P.
,
2016
, “
Standardized Loads Acting in Hip Implants
,”
PLoS One
,
11
(
5
), p.
e0155612
.10.1371/journal.pone.0155612
49.
Delp
,
S. L.
,
erson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
50.
Buchman-Pearle
,
J. M.
, and
Acker
,
S. M.
,
2021
, “
Estimating Soft Tissue Artifact of the Thigh in High Knee Flexion Tasks Using Optical Motion Capture: Implications for Marker Cluster Placement
,”
J. Biomech.
,
127
, p.
110659
.10.1016/j.jbiomech.2021.110659
51.
Camomilla
,
V.
,
Dumas
,
R.
, and
Cappozzo
,
A.
,
2017
, “
Human Movement Analysis: The Soft Tissue Artefact Issue
,”
J. Biomech.
,
62
, pp.
1
4
.10.1016/j.jbiomech.2017.09.001
52.
Lamberto
,
G.
,
Martelli
,
S.
,
Cappozzo
,
A.
, and
Mazzà
,
C.
,
2017
, “
To What Extent is Joint and Muscle Mechanics Predicted by Musculoskeletal Models Sensitive to Soft Tissue Artefacts?
,”
J. Biomech.
,
62
, pp.
68
76
.10.1016/j.jbiomech.2016.07.042
53.
Lazennec
,
J. Y.
,
Thauront
,
F.
,
Robbins
,
C. B.
, and
Pour
,
A. E.
,
2017
, “
Acetabular and Femoral Anteversions in Standing Position Are Outside the Proposed Safe Zone After Total Hip Arthroplasty
,”
J. Arthroplasty
,
32
(
11
), pp.
3550
3556
.10.1016/j.arth.2017.06.023
54.
Pierrepont
,
J.
,
Hawdon
,
G.
,
Miles
,
B.
,
Connor
,
B. O.
,
Baré
,
J.
,
Walter
,
L.
,
Marel
,
E.
,
Solomon
,
M.
,
McMahon
,
S.
, and
Shimmin
,
A.
,
2017
, “
Variation in Functional Pelvic Tilt in Patients Undergoing Total Hip Arthroplasty
,”
Bone Jt. J.
,
99-B
(
2
), pp.
184
191
.10.1302/0301-620X.99B2.BJJ-2016-0098.R1
55.
Thelen
,
T.
,
Thelen
,
P.
,
Demezon
,
H.
,
Aunoble
,
S.
, and
Le Huec
,
J.-C.
,
2017
, “
Normative 3D Acetabular Orientation Measurements by the Low-Dose Eos Imaging System in 102 Asymptomatic Subjects in Standing Position: Analyses by Side, Gender, Pelvic Incidence and Reproducibility
,”
Orthop. Traumatol. Surg. Res.
,
103
(
2
), pp.
209
215
.10.1016/j.otsr.2016.11.010
56.
Desmarais
,
Y.
,
Mottet
,
D.
,
Slangen
,
P.
, and
Montesinos
,
P.
,
2021
, “
A Review of 3d Human Pose Estimation Algorithms for Markerless Motion Capture
,”
Comput. Vision Image Understanding
,
212
, p.
103275
.10.1016/j.cviu.2021.103275
57.
Corazza
,
S.
,
Mündermann
,
L.
,
Chaudhari
,
A. M.
,
Demattio
,
T.
,
Cobelli
,
C.
, and
Andriacchi
,
T. P.
,
2006
, “
A Markerless Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hull and Simulated Annealing Approach
,”
Ann. Biomed. Eng.
,
34
(
6
), pp.
1019
1029
.10.1007/s10439-006-9122-8
58.
Kurtz
,
W. B.
,
Ecker
,
T. M.
,
Reichmann
,
W. M.
, and
Murphy
,
S. B.
,
2010
, “
Factors Affecting Bony Impingement in Hip Arthroplasty
,”
J. Arthroplasty
,
25
(
4
), pp.
624
634
.10.1016/j.arth.2009.03.024
59.
Osei
,
D. A.
,
Rebehn
,
K. A.
, and
Boyer
,
M. I.
,
2016
, “
Soft-Tissue Defects After Total Knee Arthroplasty: Management and Reconstruction
,”
J. Am. Acad. Orthop. Surg.
,
24
(
11
), pp.
769
779
.10.5435/JAAOS-D-15-00241
60.
Barrack
,
R. L.
,
2003
, “
Dislocation After Total Hip Arthroplasty: Implant Design and Orientation
,”
JAAOS-J. Am. Acad. Orthop. Surg.
,
11
(
2
), pp.
89
99
.10.5435/00124635-200303000-00003
61.
Vahdati
,
A.
,
Walscharts
,
S.
,
Jonkers
,
I.
,
Garcia-Aznar
,
J.
,
Vander Sloten
,
J.
, and
Van Lenthe
,
G.
,
2014
, “
Role of Subject-Specific Musculoskeletal Loading on the Prediction of Bone Density Distribution in the Proximal Femur
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
244
252
.10.1016/j.jmbbm.2013.11.015
62.
Van der Ploeg
,
B.
,
Tarala
,
M.
,
Homminga
,
J.
,
Janssen
,
D.
,
Buma
,
P.
, and
Verdonschot
,
N.
,
2012
, “
Toward a More Realistic Prediction of Peri-Prosthetic Micromotions
,”
J. Orthop. Res.
,
30
(
7
), pp.
1147
1154
.10.1002/jor.22041
63.
Abujaber
,
S. B.
,
Marmon
,
A. R.
,
Pozzi
,
F.
,
Rubano
,
J. J.
, and
Zeni
,
J. A.
, Jr
,
2015
, “
Sit-to-Stand Biomechanics Before and After Total Hip Arthroplasty
,”
J. Arthroplasty
,
30
(
11
), pp.
2027
2033
.10.1016/j.arth.2015.05.024
You do not currently have access to this content.