Abstract

The objective of this study was to develop an analytical model using strain–force relationships from individual rib and eviscerated thorax impacts to predict bony thoracic response. Experimental eviscerated thorax forces were assumed to have two distinct responses: an initial inertial response and subsequently, the main response. A second-order mass-spring-damper model was used to characterize the initial inertial response of eviscerated thorax force using impactor kinematics. For the main response, equivalent strains in rib levels 4–7 were mapped at each time point and a strain-based summed force model was constructed using individual rib tests and the same ribs in the eviscerated thorax test. A piecewise approach was developed to join the two components of the curve and solve for mass, damping, stiffness parameters in the initial response, transition point, and scale factor of the strain-based summed force model. The final piecewise model was compared to the overall experimental eviscerated thorax forces for each postmortem human subjects (PMHS) (n = 5) and resulted in R2 values of 0.87–0.96. A bootstrapping approach was utilized to validate the model. Final model predictions for the validation subjects were compared with the corridors constructed for the eviscerated thorax tests. Biofidelity ranking system score (BRSS) values were approximately 0.71 indicating that this approach can predict eviscerated responses within one standard deviation from the mean response. This model can be expanded to other tissue states by quantifying soft tissue and visceral contributions, therefore successfully establishing a link between individual rib tests and whole thoracic response.

References

1.
Kroell
,
C. K.
,
Schneider
,
D. C.
, and
Nahum
,
A. M.
,
1971
, “Impact Tolerances and Response of the Human Thorax,”
SAE
Paper No. 710581.10.4271/710581
2.
Viano
,
D. C.
, and
Lau
,
V. K.
,
1983
, “
Role of Impact Velocity and Chest Compression in Thoracic Injury
,”
Aviat. Space Environ. Med.
,
54
(
1
), pp.
16
21
.https://pubmed.ncbi.nlm.nih.gov/6830552/
3.
Kent
,
R.
,
2008
, “
Frontal Thoracic Response to Dynamic Loading: The Role of Superficial Tissues, Viscera and the Rib Cage
,”
Int. J. Crashworthiness
,
13
(
3
), pp.
289
300
.10.1080/13588260801933725
4.
Kent
,
R.
,
Murakami
,
S.
, and
Kobayashi
,
S.
,
2005
, “
Frontal Thoracic Response to Dynamic Loading: The Role of Superficial Tissues, Viscera and the Rib Cage
,”
Proceedings of IRCOBI Conference
,
Czech Republic, Prague
, Sept. 21–23, pp.
355
365
.https://trid.trb.org/view/862833
5.
Kemper
,
A. R.
,
Kennedy
,
E. A.
,
McNally
,
C.
,
Manoogian
,
S. J.
,
Stitzel
,
J. D.
, and
Duma
,
S. M.
,
2011
, “
Reducing Chest Injuries in Automobile Collisions: Rib Fracture Timing and Implications for Thoracic Injury Criteria
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2141
2151
.10.1007/s10439-011-0311-8
6.
Vezin
,
P.
, and
Berthet
,
F.
,
2009
, “
Structural Characterization of Human Rib Cage Behavior Under Dynamic Loading
,”
Stapp Car Crash J.
,
53
, pp.
93
125
.10.4271/2009-22-0004
7.
Baudrit
,
P.
,
Petitjean
,
A.
,
Potier
,
P.
,
Trosseille
,
X.
, and
Vallencien
,
G.
,
2014
, “
Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests
,”
Stapp Car Crash J.
,
58
, pp.
103
121
.10.4271/2014-22-0004
8.
Shaw
,
G.
,
Lessley
,
D.
,
Ash
,
J.
,
Poplin
,
J.
,
McMurry
,
T.
,
Sochor
,
M.
, and
Crandall
,
J.
,
2017
, “
Small Female Rib Cage Fracture in Frontal Sled Tests
,”
Traffic Injury Prev.
,
18
(
1
), pp.
77
82
.10.1080/15389588.2016.1193599
9.
Lessley
,
D. J.
,
Salzar
,
R.
,
Crandall
,
J.
,
Kent
,
R.
,
Bolton
,
J. R.
,
Bass
,
C. R.
,
Guillemot
,
H.
, and
Forman
,
J. L.
,
2010
, “
Kinematics of the Thorax Under Dynamic Belt Loading Conditions
,”
Int. J. Crashworthiness
,
15
(
2
), pp.
175
190
.10.1080/13588260903094426
10.
Shaw
,
J. M.
,
Herriott
,
R. G.
,
McFadden
,
J. D.
,
Donnelly
,
B. R.
, and
Bolte
,
J. H.
, IV
,
2006
, “
Oblique and Lateral Impact Response of the PMHS Thorax
,”
Stapp Car Crash J.
,
50
, pp.
147
167
.10.4271/2006-22-0007
11.
Kent
,
R.
,
Lessley
,
D.
, and
Sherwood
,
C.
,
2004
, “
Thoracic Response to Dynamic, Non-Impact Loading From a Hub, Distributed Belt, Diagonal Belt, and Double Diagonal Belts
,”
Stapp Car Crash J.
,
48
, pp.
495
519
.10.4271/2004-22-0022
12.
Kang
,
Y.-S.
,
Agnew
,
A. M.
,
Hong
,
C. B.
,
Icke
,
K.
, and
Bolte
,
J. H.
, IV
,
2017
, “
Elderly PMHS Thoracic Responses and Injuries in Frontal Impacts
,”
Proceedings of IRCOBI Conference
,
Antwerp
,
Belgium
, Sept. 13–15, pp.
539
557
.http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/69.pdf
13.
Forman
,
J.
,
Poplin
,
G. S.
,
Shaw
,
C. G.
,
McMurry
,
T. L.
,
Schmidt
,
K.
,
Ash
,
J.
, and
Sunnevang
,
C.
,
2019
, “
Automobile Injury Trends in the Contemporary Fleet: Belted Occupants in Frontal Collisions
,”
Traffic Injury Prev.
,
20
(
6
), pp.
607
612
.10.1080/15389588.2019.1630825
14.
Kindig
,
M.
,
Lau
,
A. G.
, and
Kent
,
R. W.
,
2011
, “
Biomechanical Response of Ribs Under Quasistatic Frontal Loading
,”
Traffic Injury Prev.
,
12
(
4
), pp.
377
387
.10.1080/15389588.2011.583960
15.
Charpail
,
E.
,
Trosseille
,
X.
,
Petit
,
P.
,
Laporte
,
S.
,
Lavaste
,
F.
, and
Vallancien
,
G.
,
2005
, “
Characterization of PMHS Ribs: A New Test Methodology
,”
Stapp Car Crash J.
,
49
, pp.
183
198
.10.4271/2005-22-0009
16.
Kindig
,
M. W.
,
Lau
,
A. G.
,
Forman
,
J. L.
, and
Kent
,
R. W.
,
2010
, “
Structural Response of Cadaveric Ribcages Under a Localized Loading: Stiffness and Kinematic Trends
,”
Stapp Car Crash J.
,
54
, pp.
337
380
.10.4271/2010-22-0015
17.
Yoganandan
,
N.
, and
Pintar
,
F.
,
1998
, “
Biomechanics of Human Thoracic Ribs
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
100
105
.10.1115/1.2834288
18.
Kemper
,
A. R.
,
McNally
,
C.
,
Pullins
,
C. A.
,
Freeman
,
L. J.
,
Duma
,
S. M.
, and
Rouhana
,
S. M.
,
2007
, “
The Biomechanics of Human Ribs: Material and Structural Properties From Dynamic Tension and Bending Tests
,”
Stapp Car Crash J.
,
51
, pp.
235
273
.10.4271/2007-22-0011
19.
Albert
,
D. L.
,
Kang
,
Y.-S.
,
Agnew
,
A. M.
, and
Kemper
,
A. R.
,
2017
, “
A Comparison of Rib Structural and Material Properties From Matched Whole Rib Bending and Tension Coupon Tests
,”
Proceedings of IRCOBI Conference
,
Antwerp
,
Belgium
, Sept. 13–15, pp.
567
576
.http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/71.pdf
20.
Albert
,
D. L.
,
Kang
,
Y. S.
,
Agnew
,
A. M.
, and
Kemper
,
A. R.
,
2018
, “
The Effect of Injurious Whole Rib Loading on Rib Cortical Bone Material Properties
,”
Proceedings of IRCOBI Conference
, Athens, Greece, Sept. 12–14, pp.
680
687
.https://www.researchgate.net/publication/328049817_The_Effect_of_Injurious_Whole_Rib_Loading_on_Rib_Cortical_Bone_Material_Properties
21.
Cormier
,
J. M.
,
Stitzel
,
J. D.
,
Duma
,
S. M.
, and
Matsuoka
,
F.
,
2005
, “
Regional Variation in the Structural Response and Geometrical Properties of Human Ribs
,”
Proceedings of Associate for the Advancement of Automotive Medicine
, Cambridge, Boston, MA, Sept. 12–14, pp.
153
170
.https://www.researchgate.net/publication/7585168_Regional_Variation_in_the_Structural_Response_and_Geometrical_Properties_of_Human_Ribs
22.
Kalra
,
A.
,
Saif
,
T.
,
Shen
,
M.
,
Jin
,
X.
,
Begeman
,
P.
,
Yang
,
K. H.
, and
Millis
,
S.
,
2005
, “
Characterization of Human Ribs Biomechanical Responses Due to Three-Point Bending
,”
Stapp Car Crash J.
,
59
, pp.
113
130
.10.4271/2015-22-0005
23.
Schafman
,
M. A.
,
Kang
,
Y. S.
,
Moorhouse
,
K.
,
White
,
S. E.
,
Bolte
,
J. I.
, and
Agnew
,
A. M.
,
2016
, “
Age and Sex Alone Are Insufficient to Predict Human Rib Structural Response to Dynamic A-P Loading
,”
J. Biomech.
,
49
(
14
), pp.
3516
3522
.10.1016/j.jbiomech.2016.09.030
24.
Murach
,
M. M.
,
Kang
,
Y.-S.
,
Goldman
,
S. D.
,
Schafman
,
M. A.
,
Schlecht
,
S. H.
,
Moorhouse
,
K.
,
Bolte
,
J. H.
, and
Agnew
,
A. M.
,
2017
, “
Rib Geometry Explains Variation in Dynamic Structural Response: Potential Implications for Frontal Impact Fracture Risk
,”
Ann. Biomed. Eng.
,
45
(
9
), pp.
2159
2173
.10.1007/s10439-017-1850-4
25.
Katzenberger
,
M. J.
,
Albert
,
D. L.
,
Agnew
,
A. M.
, and
Kemper
,
A. R.
,
2020
, “
Effects of Sex, Age, and Two Loading Rates on the Tensile Material Properties of Human Rib Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103410
.10.1016/j.jmbbm.2019.103410
26.
Agnew
,
A. M.
,
Murach
,
M. M.
,
Misicka
,
E.
,
Moorhouse
,
K.
,
Bolte
,
J. H.
, IV
,., and
Kang
,
Y. S.
,
2017
, “
The Effect of Body Size on Adult Human Rib Structural Properties
,”
Proceedings of IRCOBI Conference
, Antwerp, Belgium, Sept. 13–15, pp.
728
736
.https://www.researchgate.net/publication/319964149_The_Effect_of_Body_Size_on_Adult_Human_Rib_Structural_Properties
27.
Kang
,
Y.-S.
,
Moorhouse
,
K.
,
Bolte
,
J. H.
, IV
,
Stammen
,
J.
, and
Agnew
,
A. M.
,
2020
, “
Viscoelastic Structural Properties of Human Ribs in a Simulated Frontal Impact
,”
Proceeding of IRCOBI Conference
, Online, pp.
782
794
.http://www.ircobi.org/wordpress/downloads/irc20/pdf-files/87.pdf
28.
Agnew
,
A. M.
,
Murach
,
M. M.
,
Dominguez
,
V. M.
,
Sreedhar
,
A.
,
Misicka
,
E.
,
Harden
,
A. L.
,
Bolte
,
J. H.
, IV
,
Kang
,
Y.-S.
,
Stammen
,
J.
, and
Moorhouse
,
K.
,
2018
, “
Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal Impacts
,”
Stapp Car Crash J.
,
62
, pp.
119
192
.10.4271/2018-22-0004
29.
Lobdell
,
T. E.
,
Kroell
,
C. K.
,
Schneider
,
D. C.
,
Hering
,
W. E.
, and
Nahum
,
A. M.
,
1973
, “
Impact Response of the Human Thorax
,”
Human Impact Response: Measurement and Simulation
,
Springer
,
Boston, MA
, pp.
201
245
.
30.
Neathery
,
R.
, and
Lobdell
,
T.
,
1973
, “
Mechanical Simulation of Human Thorax Under Impact
,”
SAE
Paper No. 730982.https://www.sae.org/publications/technical-papers/content/730982/
31.
Kang
,
Y. S.
,
Bolte
,
J.
, IV
,
Stammen
,
J.
,
Moorhouse
,
K.
, and
Agnew
,
A.
,
2019
, “
A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses Using Structural Properties of Human Ribs
,”
Stapp Car Crash J.
,
63
, pp.
307
329
.10.4271/2019-22-0013
32.
Sreedhar
,
A.
,
Kang
,
Y.-S.
,
Bolte
,
J. H.
, IV
,
Murach
,
M. M.
,
Stammen
,
J.
,
Moorhouse
,
K.
,
Ramachandra
,
R.
, and
Agnew
,
A. M.
,
2020
, “
A Hierarchical Exploration of Rib Strain in Dynamic Frontal Thoracic Impacts
,”
Proceeding of IRCOBI Conference
, Online, pp.
746
769
.http://www.ircobi.org/wordpress/downloads/irc20/pdf-files/85.pdf
33.
Murach
,
M. M.
,
Kang
,
Y.-S.
,
Bolte
,
J. H.
, IV
,
Stark
,
D.
,
Ramachandra
,
R.
,
Agnew
,
A. M.
,
Moorhouse
,
K.
, and
Stammen
,
J.
,
2018
, “
Quantification of Soft Tissue and Skeletal Contributions to Thoracic Response in a Dynamic Frontal Loading Scenario
,”
Stapp Car Crash J.
,
62
, pp.
193
269
.10.4271/2018-22-0005
34.
Ramachandra
,
R.
,
Kang
,
Y. S.
,
Stammen
,
J.
,
Moorhouse
,
K.
,
Murach
,
M. M.
,
Bolte
,
J. H.
, IV
,., and
Agnew
,
A. M.
,
2019
, “
Evaluation of Skeletal and Soft Tissue Contributions to Thoracic Response of GHBMC M50-O Model in Dynamic Frontal Loading Scenarios
,”
Proceedings of IRCOBI Conference
, Florence, Italy, Sept. 11–13, pp.
332
348
.https://www.researchgate.net/publication/336014152_Evaluation_of_Skeletal_and_Soft_Tissue_Contributions_to_Thoracic_Response_of_GHBMC_in_Dynamic_Frontal_Loading_Scenarios
35.
Robbins
,
D. H.
,
1983
,
Anthropometric Specifications for Mid-Size Male Dummy
, Vol.
2
,
University of Michigan
,
Ann Arbor, MI
.
36.
Shurtz
,
B. K.
,
Agnew
,
A. M.
,
Kang
,
Y. S.
, and
Bolte
,
J. I.
,
2017
, “
Effect of Chestbands on the Global and Local Response of the Human Thorax to Frontal Impact
,”
Ann. Biomed. Eng.
,
45
(
11
), pp.
2663
2672
.10.1007/s10439-017-1895-4
37.
SAE
,
2007
,
Instrumentation for Impact Test-Part 1 – Electronic Instrumental, J211/1
,
SAE
,
Warrendale, PA
.
38.
Kang
,
Y. S.
,
Kwon
,
H. J.
,
Stammen
,
J.
,
Moorhouse
,
K.
, and
Agnew
,
A. M.
,
2021
, “
Biomechanical Response Targets of Adult Human Ribs in Frontal Impacts
,”
Ann. Biomed. Eng.
,
49
(
2
), pp.
900
911
.10.1007/s10439-020-02613-x
You do not currently have access to this content.