Abstract

This paper proposes a new method for estimating skeletal muscle forces using a model derived from dimensional analysis. It incorporates electromyography signals and muscle force–length, force–velocity, and force–frequency relationships as inputs. The purpose of this model is to provide more accurate estimates of individualized muscle forces to better predict surrounding musculoskeletal tissue and joint contact loading. The derivation begins with dimensional analysis and a selection of critical parameters that define muscle force generation. The resulting constitutive equation gives way to a unique application of inverse-dynamics, one which avoids the issue of indeterminacy when reaction moments and ligament loading are minimized in a joint. The ankle joint is used as an example for developing the equations that culminate into a system of linear equations. A muscle force model capable of being calibrated and then used to predict joint contact and surrounding tissue loading is critical in advancing biomechanics research areas like injury prevention, performance optimization, and tissue engineering, among others. This model's foundation in dimensional analysis, along with its inclusion of electromyography signals, gives promise that it will be physiologically relevant and suitable for application-based studies. A following paper, Part II, will evaluate this premise in an experimental setting.

References

1.
Herzog
,
M. M.
,
Marshall
,
S. W.
,
Lund
,
J. L.
,
Pate
,
V.
, and
Spang
,
J. T.
,
2017
, “
Cost of Outpatient Arthroscopic Anterior Cruciate Ligament Reconstruction Among Commercially Insured Patients in the United States, 2005–2013
,”
Orthop. J. Sports Med.
,
5
(
1
), pp. 642–647. 10.1177/2325967116684776
2.
Litwic
,
A.
,
Edwards
,
M. H.
,
Dennison
,
E. M.
, and
Cooper
,
C.
,
2013
, “
Epidemiology and Burden of Osteoarthritis
,”
Brit. Med. Bull.
,
105
(
1
), pp.
185
199
.10.1093/bmb/lds038
3.
Jackson
,
D.
,
Simon
,
T. M.
, and
Aberman
,
H. M.
,
2001
, “
Symptomatic Articular Cartilage Degeneration: The Impact in the New Millennium
,”
Clin. Orthop. Relat. Res.
,
391
(
Suppl
), pp.
S14
S25
.10.1097/00003086-200110001-00003
4.
Cram
,
P.
,
Lu
,
X.
,
Kates
,
S. L.
,
Singh
,
J. A.
,
Li
,
Y.
, and
Wolf
,
B. R.
,
2012
, “
Total Knee Arthroplasty Volume, Utilization, and Outcomes Among Medicare Beneficiaries, 1991–2010
,”
J. Am. Med. Assoc.
,
308
(
12
), pp.
1227
1236
.10.1001/2012.jama.11153
5.
Delanois
,
R. E.
,
Mistry
,
J. B.
,
Gwam
,
C. U.
,
Mohamed
,
N. S.
,
Choksi
,
U. S.
, and
Mont
,
M. A.
,
2017
, “
Current Epidemiology of Revision Total Knee Arthroplasty in the United States
,”
J. Arthroplasty
,
32
(
9
), pp.
2663
2668
.10.1016/j.arth.2017.03.066
6.
Schilaty
,
N. D.
,
Nagelli
,
C.
,
Bates
,
N. A.
,
Sanders
,
T. L.
,
Krych
,
A. J.
,
Stuart
,
M. J.
, and
Hewett
,
T. E.
,
2017
, “
Incidence of Second Anterior Cruciate Ligament Tears and Identification of Associated Risk Factors From 2001 to 2010 Using a Geographic Database
,”
Orthop. J. Sports Med.
,
5
(
8
).10.1177/2325967117724196
7.
Gentleman
,
E.
,
Lay
,
A. N.
,
Dickerson
,
D. A.
,
Nauman
,
E. A.
,
Livesay
,
G. A.
, and
Dee
,
K. C.
,
2003
, “
Mechanical Characterization of Collagen Fibers and Scaffolds for Tissue Engineering
,”
Biomaterials
,
24
(
21
), pp.
3805
3813
.10.1016/S0142-9612(03)00206-0
8.
Dickerson
,
D. A.
,
Misk
,
T. N.
,
Van Sickle
,
D. C.
,
Breur
,
G. J.
, and
Nauman
,
E. A.
,
2013
, “
In Vitro and In Vivo Evaluation of Orthopedic Interface Repair Using a Tissue Scaffold With a Continuous Hard Tissue-Soft Tissue Transition
,”
J. Orthop. Surg. Res.
,
8
(
1
), pp.
1
11
.10.1186/1749-799X-8-18
9.
Ratcliffe
,
A.
,
Butler
,
D. L.
,
Dyment
,
N. A.
,
Cagle
,
P. J.
,
Proctor
,
C. S.
,
Ratcliffe
,
S. S.
, and
Flatow
,
E. L.
,
2015
, “
Scaffolds for Tendon and Ligament Repair and Regeneration
,”
Ann. Biomed. Eng.
,
43
(
3
), pp.
819
831
.10.1007/s10439-015-1263-1
10.
Smith
,
M. J.
,
Pfeiffer
,
F. M.
,
Cook
,
C. R.
,
Kuroki
,
K.
, and
Cook
,
J. L.
,
2017
, “
Rotator Cuff Healing Using Demineralized Cancellous Bone Matrix Sponge Interposition Compared to Standard Repair in a Preclinical Canine Model
,”
J. Orthop. Res.
,
36
(
3
), pp.
906
912
10.1002/jor.23680.
11.
Puppi
,
D.
,
Chiellini
,
F.
,
Piras
,
A. M.
, and
Chiellini
,
E.
,
2010
, “
Polymeric Materials for Bone and Cartilage Repair
,”
Prog. Polym. Sci.
,
35
(
4
), pp.
403
440
.10.1016/j.progpolymsci.2010.01.006
12.
Fortier
,
L. A.
,
Barker
,
J. U.
,
Strauss
,
E. J.
,
McCarrel
,
T. M.
, and
Cole
,
B. J.
,
2011
, “
The Role of Growth Factors in Cartilage Repair
,”
Clin. Orthop. Relat. Res.
,
469
(
10
), pp.
2706
2715
.10.1007/s11999-011-1857-3
13.
Johnson
,
K.
,
Zhu
,
S.
,
Tremblay
,
M. S.
,
Payette
,
J. N.
,
Wang
,
J.
,
Bouchez
,
L. C.
,
Meeusen
,
S.
,
Althage
,
A.
,
Cho
,
C. Y.
,
Wu
,
X.
, and
Schultz
,
P. G.
,
2012
, “
A Stem Cell-Based Approach to Cartilage Repair
,”
Science
,
336
(
6082
), pp.
717
721
.10.1126/science.1215157
14.
Kuo
,
C. K.
,
Marturano
,
J. E.
, and
Tuan
,
R. S.
,
2010
, “
Novel Strategies in Tendon and Ligament Tissue Engineering: Advanced Biomaterials and Regeneration Motifs
,”
Sports Med., Arthroscopy, Rehabil., Ther. Technol.
,
2
(
20
), pp.
1
14
.10.1186/1758-2555-2-20
15.
Cook
,
D.
,
Julias
,
M.
, and
Nauman
,
E.
,
2014
, “
Biological Variability in Biomechanical Engineering Research: Significance and Meta-Analysis of Current Modeling Practices
,”
J. Biomech.
,
47
(
6
), pp.
1241
1250
.10.1016/j.jbiomech.2014.01.040
16.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.10.1016/S0021-9290(03)00010-1
17.
Bean
,
J. C.
,
Chaffin
,
D. B.
, and
Schultz
,
A. B.
,
1988
, “
Biomechanical Model Calculation of Muscle Contraction Forces: A Double Linear Programming Method
,”
J. Biomech.
,
21
(
1
), pp.
59
66
.10.1016/0021-9290(88)90192-3
18.
Prilutsky
,
B. I.
, and
Zatsiorsky
,
V. M.
,
2002
, “
Optimization-Based Models of Muscle Coordination
,”
Exer. Sport Sci. Rev.
,
30
(
1
), pp.
32
38
.10.1097/00003677-200201000-00007
19.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London Ser. B Biol. Sci.
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
20.
Zajac
,
F.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.http://e.guigon.free.fr/rsc/article/Zajac89.pdf
21.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
22.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
23.
Erskine
,
R. M.
,
Jones
,
D. A.
,
Williams
,
A. G.
,
Stewart
,
C. E.
, and
Degens
,
H.
,
2010
, “
Resistance Training Increases In Vivo Quadriceps Femoris Muscle Specific Tension in Young Men
,”
Acta Physiol.
,
199
(
1
), pp.
83
89
.10.1111/j.1748-1716.2010.02085.x
24.
Buchanan
,
T.
,
1995
, “
Evidence That Maximum Muscle Stress is Not a Constant: Differences in Specific Tension in Elbow Flexors and Extensors
,”
Med. Eng. Phys.
,
17
(
7
), pp.
529
536
.10.1016/1350-4533(95)00005-8
25.
Lloyd
,
D. G.
, and
Buchanan
,
T. S.
,
1996
, “
A Model of Load Sharing Between Muscles and Soft Tissues at the Human Knee During Static Tasks
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
367
376
.10.1115/1.2796019
26.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech.
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
27.
Liu
,
M. M.
,
Herzog
,
W.
, and
Savelberg
,
H. H. C. M.
,
1999
, “
Dynamic Muscle Force Predictions From EMG: An Artificial Neural Network Approach
,”
J. Electromyogr. Kinesiol.
,
9
(
6
), pp.
391
400
.10.1016/S1050-6411(99)00014-0
28.
Choi
,
C.
,
Kwon
,
S.
,
Park
,
W.
,
Dong Lee
,
H.
, and
Kim
,
J.
,
2010
, “
Real-Time Pinch Force Estimation by Surface Electromyography Using an Artificial Neural Network
,”
Med. Eng. Phys.
,
32
(
5
), pp.
429
436
.10.1016/j.medengphy.2010.04.004
29.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2005
, “
Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model
,”
Med. Sci. Sports Exer.
,
37
, pp.
1911
1916
.10.1249/01.mss.0000176684.24008.6f
30.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.10.1123/jab.20.4.367
31.
Lloyd
,
D. G.
,
Buchanan
,
T. S.
, and
Besier
,
T. F.
,
2005
, “
Neuromuscular Biomechanical Modeling to Understand Knee Ligament Loading
,”
Med. Sci. Sports Exer.
,
37
(
11
), pp.
1939
1947
.10.1249/01.mss.0000176676.49584.ba
32.
Zheng
,
N.
,
Fleisig
,
G. S.
,
Escamilla
,
R. F.
, and
Barrentine
,
S. W.
,
1998
, “
An Analytical Model of the Knee for Estimation of Internal Forces During Exercise
,”
J. Biomech.
,
31
(
10
), pp.
963
967
.10.1016/S0021-9290(98)00056-6
33.
Heine
,
R.
,
Manal
,
K.
, and
Buchanan
,
T. S.
,
2003
, “
Using Hill-Type Muscle Models and EMG Data in a Forward Dynamic Analysis of Joint Moment: Evaluation of Critical Parameters
,”
J. Mech. Med. Biol.
,
03
(
2
), pp.
169
186
.10.1142/S0219519403000727
34.
Barenblatt
,
G.
,
2010
,
Scaling
,
Cambridge University Press
, Cambridge, UK.
35.
Brand
,
L.
,
1957
, “
The Pi Theorem of Dimensional Analysis
,”
Arch. Ration. Mech. Anal.
,
1
(
1
), pp.
35
45
.10.1007/BF00297994
36.
Ghapanchizadeh
,
H.
,
Ahmad
,
S. A.
,
Ishak
,
J.
, and
Al-Quraishi
,
M. S.
,
2017
, “
Review of Surface Electrode Placement for Recording Electromyography Signals
,”
Biomed. Res.
, pp.
S1
S7
.http://psasir.upm.edu.my/id/eprint/62986/
37.
Rassier
,
D.
,
MacIntosh
,
B.
, and
Herzog
,
W.
,
1999
, “
Length Dependence of Active Force Production in Skeletal Muscle
,”
J. Appl. Physiol.
,
86
(
5
), pp.
1445
1457
.10.1152/jappl.1999.86.5.1445
38.
Herzog
,
W.
, and
ter Keurs
,
H. E.
,
1988
, “
Force-Length Relation of in-Vivo Human Rectus Femoris Muscles
,”
Pflügers Arch. Eur. J. Physiol.
,
411
(
6
), pp.
642
647
.10.1007/BF00580860
39.
Alcazar
,
J.
,
Csapo
,
R.
,
Ara
,
I.
, and
Alegre
,
L. M.
,
2019
, “
On the Shape of the Force-Velocity Relationship in Skeletal Muscles: The Linear, the Hyperbolic, and the Double-Hyperbolic
,”
Front. Physiol.
,
10
, pp.
1
21
.10.3389/fphys.2019.00769
40.
Bobbert
,
M. F.
,
2012
, “
Why is the Force-Velocity Relationship in Leg Press Tasks Quasi-Linear Rather Than Hyperbolic?
,”
J. Appl. Physiol.
,
112
(
12
), pp.
1975
1983
.10.1152/japplphysiol.00787.2011
41.
Lee
,
S.
,
Russ
,
D.
, and
Binder-Macleod
,
S.
,
2009
, “
Force-Frequency Relation of Skeletal Muscle
,”
Encyclopedia of Neuroscience
,
Springer
, Berlin, pp.
1608
1611
.
42.
Broman
,
H.
,
Bilotto
,
G.
, and
De Luca
,
C. J.
,
1985
, “
Myoelectric Signal Conduction Velocity and Spectral Parameters: Influence of Force and Time
,”
J. Appl. Physiol.
,
58
(
5
), pp.
1428
1437
.10.1152/jappl.1985.58.5.1428
43.
Fukunaga
,
T.
,
Roy
,
R. R.
,
Shellock
,
F. G.
,
Hodgson
,
J. A.
,
Day
,
M. K.
,
Lee
,
P. L.
,
Kwong–Fu
,
H.
, and
Edgerton
,
V. R.
,
1992
, “
Physiological Cross-Sectional Area of Human Leg Muscles Based on Magnetic Resonance Imaging
,”
J. Orthop. Res.
,
10
(
6
), pp.
926
934
.10.1002/jor.1100100623
44.
Wong
,
Y. M.
, and
Ng
,
G. Y.
,
2006
, “
Surface Electrode Placement Affects the EMG Recordings of the Quadriceps Muscles
,”
Phys. Ther. Sport
,
7
(
3
), pp.
122
127
.10.1016/j.ptsp.2006.03.006
45.
Bobbert
,
M. F.
,
Ettema
,
G. C.
, and
Huijing
,
P. A.
,
1990
, “
The Force-Length Relationship of a Muscle-Tendon Complex: Experimental Results and Model Calculations
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
61
(
3–4
), pp.
323
329
.10.1007/BF00357621
46.
Stackhouse
,
S. K.
,
Binder-Macleod
,
S. A.
, and
Lee
,
S. C.
,
2005
, “
Voluntary Muscle Activation, Contractile Properties, and Fatigability in Children With and Without Cerebral Palsy
,”
Muscle Nerve
,
31
(
5
), pp.
594
601
.10.1002/mus.20302
47.
Binder-Macleod
,
S. A.
,
Halden
,
E. E.
, and
Jungles
,
K. A.
,
1995
, “
Effects of Stimulation Intensity on the Physiological Responses of Human Motor Units
,”
Med. Sci. Sports Exer.
,
27
(
4
), pp.
556
565
.10.1249/00005768-199504000-00014
48.
Naeije
,
M.
, and
Zorn
,
H.
,
1982
, “
Relation Between EMG Power Spectrum Shifts and Muscle Fibre Action Potential Conduction Velocity Changes During Local Muscular Fatigue in Man
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
50
(
1
), pp.
23
33
.10.1007/BF00952241
You do not currently have access to this content.