Abstract

Temporal variations of the coronary arteries during a cardiac cycle are defined as the superposition of the changes in the position, curvature, and torsion of the coronary artery axis markers and the variations in the lumen cross-sectional shape due to the distensible wall motion induced by the pulse pressure and contraction of the myocardium in a cardiac cycle. This review discusses whether modeling of the temporal variations of the coronary arteries is needed for the investigation of hemodynamics specifically in time-critical applications such as a clinical environment. The numerical modelings in the literature that model or disregard the temporal variations of the coronary arteries on the hemodynamic parameters are discussed. The results in the literature show that neglecting the effects of temporal geometric variations is expected to result in about 5% deviation of the time-averaged pressure drop and wall shear stress values and also about 20% deviation of the temporal variations of hemodynamic parameters, such as time-dependent wall shear stress and oscillatory shear index. This review study can be considered as a guide for future studies to outline the conditions in which temporal variations of the coronary arteries can be neglected while providing a reliable estimation of hemodynamic parameters.

References

1.
Wahle
,
A.
,
Lopez
,
J. J.
,
Olszewski
,
M. E.
,
Vigmostad
,
S. C.
,
Chandran
,
K. B.
,
Rossen
,
J. D.
, and
Sonka
,
M.
,
2006
, “
Plaque Development, Vessel Curvature, and Wall Shear Stress in Coronary Arteries Assessed by X-Ray Angiography and Intravascular Ultrasound
,”
Med. Image Anal.
,
10
(
4
), pp.
615
631
.10.1016/j.media.2006.03.002
2.
Torii
,
R.
,
Keegan
,
J.
,
Wood
,
N. B.
,
Dowsey
,
A. W.
,
Hughes
,
A. D.
,
Yang
,
G. Z.
,
Firmin
,
D. N.
,
McG Thom
,
S. A.
, and
Xu
,
X. Y.
,
2009
, “
The Effect of Dynamic Vessel Motion on Haemodynamic Parameters in the Right Coronary Artery: A Combined MR and CFD Study
,”
Br. J. Radiol.
,
82
(
special_issue_1
), pp.
S24
S32
.10.1259/bjr/62450556
3.
Ding
,
Z.
, and
Friedman
,
M. H.
,
2000
, “
Dynamics of Human Coronary Arterial Motion and Its Potential Role in Coronary Atherogenesis
,”
ASME J. Biomech. Eng.
,
122
(
5
), pp.
488
492
.10.1115/1.1289989
4.
Puentes
,
J.
,
Roux
,
C.
,
Garreau
,
M.
, and
Coatrieux
,
J. L.
,
1998
, “
Dynamic Feature Extraction of Coronary Artery Motion Using DSA Image Sequences
,”
IEEE Trans. Med. Imaging
,
17
(
6
), pp.
857
871
.10.1109/42.746619
5.
Ding
,
Z.
, and
Friedman
,
M. H.
,
2000
, “
Quantification of 3-D Coronary Arterial Motion Using Clinical Biplane Cineangiograms
,”
Int. J. Cardiovasc. Imaging
,
16
(
5
), pp.
331
346
.10.1023/A:1026590417177
6.
O'Loughlin
,
A. J.
,
Byth
,
K.
,
French
,
J. K.
,
Richards
,
D. A.
,
Hennessy
,
A.
,
Denniss
,
A. R.
, and
Kovoor
,
P.
,
2011
, “
The Compression Type of Coronary Artery Motion in Patients With ST-Segment Elevation Acute Myocardial Infarction and Normal Controls: A Case-Control Study
,”
BMC Res. Notes
,
4
(
1
), p.
51
.10.1186/1756-0500-4-51
7.
MöHlenkamp
,
S.
,
Hort
,
W.
,
Ge
,
J.
, and
Erbel
,
R.
,
2002
, “
Update on Myocardial Bridging
,”
Circulation
,
106
(
20
), pp.
2616
2622
.10.1161/01.CIR.0000038420.14867.7A
8.
Johnson
,
K. R.
,
Patel
,
S. J.
,
Whigham
,
A.
,
Hakim
,
A.
,
Pettigrew
,
R. I.
, and
Oshinski
,
J. N.
,
2004
, “
Three-Dimensional, Time-Resolved Motion of the Coronary Arteries
,”
J. Cardiovasc. Magn. Resonance
,
6
(
3
), pp.
663
673
.10.1081/JCMR-120038086
9.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
,
2003
, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
420
429
.10.1114/1.1560631
10.
Godia
,
E. C.
,
Madhok
,
R.
,
Pittman
,
J.
,
Trocio
,
S.
,
Ramas
,
R.
,
Cabral
,
D.
,
Sacco
,
R. L.
, and
Rundek
,
T.
,
2007
, “
Carotid Artery Distensibility: A Reliability Study
,”
J. Ultrasound Med.
,
26
(
9
), pp.
1157
1165
.10.7863/jum.2007.26.9.1157
11.
Yong
,
A. S. C.
,
Javadzadegan
,
A.
,
Fearon
,
W. F.
,
Moshfegh
,
A.
,
Lau
,
J. K.
,
Nicholls
,
S.
,
Ng
,
M. K. C.
, and
Kritharides
,
L.
,
2017
, “
The Relationship Between Coronary Artery Distensibility and Fractional Flow Reserve
,”
PLoS One
,
12
(
7
), pp.
e0181824
e0181824
.10.1371/journal.pone.0181824
12.
Park
,
E. A.
,
Lee
,
W.
,
Park
,
S. J.
,
Kim
,
Y. K.
, and
Hwang
,
H. Y.
,
2016
, “
Influence of Coronary Artery Diameter on Intracoronary Transluminal Attenuation Gradient During CT Angiography
,”
JACC: Cardiovasc. Imaging
,
9
(
9
), pp.
1074
1083
.10.1016/j.jcmg.2015.10.028
13.
Shaw
,
J. A.
,
Kingwell
,
B. A.
,
Walton
,
A. S.
,
Cameron
,
J. D.
,
Pillay
,
P.
,
Gatzka
,
C. D.
, and
Dart
,
A. M.
,
2002
, “
Determinants of Coronary Artery Compliance in Subjects With and Without Angiographic Coronary Artery Disease
,”
J. Am. Coll. Cardiol.
,
39
(
10
), pp.
1637
1643
.10.1016/S0735-1097(02)01842-9
14.
Huo
,
Y.
,
Choy
,
J. S.
,
Svendsen
,
M.
,
Sinha
,
A. K.
, and
Kassab
,
G. S.
,
2009
, “
Effects of Vessel Compliance on Flow Pattern in Porcine Epicardial Right Coronary Arterial Tree
,”
J. Biomech.
,
42
(
5
), pp.
594
602
.10.1016/j.jbiomech.2008.12.011
15.
Brown
,
A. G.
,
Shi
,
Y.
,
Marzo
,
A.
,
Staicu
,
C.
,
Valverde
,
I.
,
Beerbaum
,
P.
,
Lawford
,
P. V.
, and
Hose
,
D. R.
,
2012
, “
Accuracy Vs. Computational Time: Translating Aortic Simulations to the Clinic
,”
J. Biomech.
,
45
(
3
), pp.
516
523
.10.1016/j.jbiomech.2011.11.041
16.
Hirschhorn
,
M.
,
Tchantchaleishvili
,
V.
,
Stevens
,
R.
,
Rossano
,
J.
, and
Throckmorton
,
A.
,
2020
, “
Fluid–Structure Interaction Modeling in Cardiovascular Medicine—A Systematic Review 2017–2019
,”
Med. Eng. Phys.
,
78
, pp.
1
13
.10.1016/j.medengphy.2020.01.008
17.
Zhong
,
L.
,
Zhang
,
J. M.
,
Su
,
B.
,
Tan
,
R. S.
,
Allen
,
J. C.
, and
Kassab
,
G. S.
,
2018
, “
Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities
,”
Front. Physiol.
,
9
, p.
742
.10.3389/fphys.2018.00742
18.
Eslami
,
P.
,
Tran
,
J.
,
Jin
,
Z.
,
Karady
,
J.
,
Sotoodeh
,
R.
,
Lu
,
M. T.
,
Hoffmann
,
U.
, and
Marsden
,
A.
,
2020
, “
Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries
,”
ASME J. Biomech. Eng.
,
142
(
2
), pp.
245031
2450310
.10.1115/1.4043722
19.
Morris
,
P. D.
,
Narracott
,
A.
,
Tengg-Kobligk
,
H. V.
,
Silva Soto
,
D. A.
,
Hsiao
,
S.
,
Lungu
,
A.
,
Evans
,
P.
,
Bressloff
,
N. W.
,
Lawford
,
P. V.
,
Hose
,
D. R.
, and
Gunn
,
J. P.
,
2016
, “
Computational Fluid Dynamics Modelling in Cardiovascular Medicine
,”
Heart
,
102
(
1
), pp.
18
28
.10.1136/heartjnl-2015-308044
20.
Amaya
,
R.
,
Cancel
,
L. M.
, and
Tarbell
,
J. M.
,
2016
, “
Interaction Between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression
,”
PLoS One
,
11
(
11
), p.
e0166569
.10.1371/journal.pone.0166569
21.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling: Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.10.1016/j.jacc.2007.02.059
22.
Chatzizisis
,
Y. S.
,
Jonas
,
M.
,
Coskun
,
A. U.
,
Beigel
,
R.
,
Stone
,
B. V.
,
Maynard
,
C.
,
Gerrity
,
R. G.
,
Daley
,
W.
,
Rogers
,
C.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2008
, “
Prediction of the Localization of High-Risk Coronary Atherosclerotic Plaques on the Basis of Low Endothelial Shear Stress
,”
Circulation
,
117
(
8
), pp.
993
1002
.10.1161/CIRCULATIONAHA.107.695254
23.
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Timmins
,
L. H.
,
Binongo
,
J. N. G.
,
Golub
,
L. J.
,
Corban
,
M. T.
,
Finn
,
A. V.
,
Oshinsk
,
J. N.
,
Quyyumi
,
A. A.
,
Giddens
,
D. P.
, and
Samady
,
H.
,
2012
, “
Association of Coronary Wall Shear Stress With Atherosclerotic Plaque Burden, Composition, and Distribution in Patients With Coronary Artery Disease
,”
J. Am. Heart Assoc.
,
1
(
4
), p.
e002543
.10.1161/JAHA.112.002543
24.
Gijsen
,
F.
,
van der
,
G. A.
,
van der
,
S. A.
, and
Wentzel
,
J.
,
2013
, “
Shear Stress and Advanced Atherosclerosis in Human Coronary Arteries
,”
J. Biomech.
,
46
(
2
), pp.
240
247
.10.1016/j.jbiomech.2012.11.006
25.
Samady
,
H.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Suo
,
J.
,
Dhawan
,
S. S.
,
Maynard
,
C.
,
Timmins
,
L. H.
,
Quyyumi
,
A. A.
, and
Giddens
,
D. P.
,
2011
, “
Coronary Artery Wall Shear Stress is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease
,”
Circulation
,
124
(
7
), pp.
779
788
.10.1161/CIRCULATIONAHA.111.021824
26.
Stone
,
P. H.
,
Coskun
,
A. U.
,
Kinlay
,
S.
,
Clark
,
M. E.
,
Sonka
,
M.
,
Wahle
,
A.
,
Ilegbusi
,
O. J.
,
Yeghiazarians
,
Y.
,
Popma
,
J. J.
,
Orav
,
J.
,
Kuntz
,
R. E.
, and
Feldman
,
C. L.
,
2003
, “
Effect of Endothelial Shear Stress on the Progression of Coronary Artery Disease, Vascular Remodeling, and in-Stent Restenosis in Humans
,”
Circulation
,
108
(
4
), pp.
438
444
.10.1161/01.CIR.0000080882.35274.AD
27.
Timmins
,
L. H.
,
Molony
,
D. S.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Oshinski
,
J. N.
,
Samady
,
H.
, and
Giddens
,
D. P.
,
2015
, “
Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
94
106
.10.1007/s10439-014-1155-9
28.
Hughes
,
T. J.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.10.1016/0045-7825(81)90049-9
29.
Takashi
,
N.
, and
Hughes
,
T. J.
,
1992
, “
An Arbitrary Lagrangian-Eulerian Finite Element Method for Interaction of Fluid and a Rigid Body
,”
Comput. Methods Appl. Mech. Eng.
,
95
(
1
), pp.
115
138
.10.1016/0045-7825(92)90085-X
30.
Zeng
,
D.
, and
Ethier
,
C.
,
2003
, “
A Mesh-Updating Scheme for Hemodynamic Simulations in Vessels Undergoing Large Deformations
,”
J. Eng. Math.
,
47
(
3/4
), pp.
405
418
.10.1023/B:ENGI.0000007968.02446.91
31.
Prosi
,
M.
,
Perktold
,
K.
,
Ding
,
Z.
, and
Friedman
,
M. H.
,
2004
, “
Influence of Curvature Dynamics on Pulsatile Coronary Artery Flow in a Realistic Bifurcation Model
,”
J. Biomech.
,
37
(
11
), pp.
1767
1775
.10.1016/j.jbiomech.2004.01.021
32.
Kolandavel
,
M. K.
,
Fruend
,
E.-T.
,
Ringgaard
,
S.
, and
Walker
,
P. G.
,
2006
, “
The Effects of Time Varying Curvature on Species Transport in Coronary Arteries
,”
Ann. Biomed. Eng.
,
34
(
12
), pp.
1820
1832
.10.1007/s10439-006-9188-3
33.
Hasan
,
M.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2013
, “
Effects of Cyclic Motion on Coronary Blood Flow
,”
ASME J. Biomech. Eng.
,
135
(
12
), p. 121002.10.1115/1.4025335
34.
Lantz
,
J.
,
Renner
,
J.
, and
Karlsson
,
M.
,
2011
, “
Wall Shear Stress in a Subject Specific Human Aorta—Influence of Fluid-Structure Interaction
,”
Int. J. Appl. Mech.
,
03
(
04
), pp.
759
778
.10.1142/S1758825111001226
35.
Liu
,
Y.
,
Lai
,
Y.
,
Nagaraj
,
A.
,
Kane
,
B.
,
Hamilton
,
A.
,
Greene
,
R.
,
McPherson
,
D. D.
, and
Chandran
,
K. B.
,
2001
, “
Pulsatile Flow Simulation in Arterial Vascular Segments With Intravascular Ultrasound Images
,”
Med. Eng. Phys.
,
23
(
8
), pp.
583
595
.10.1016/S1350-4533(01)00088-1
36.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.10.1016/S0021-9290(00)00043-9
37.
Mirramezani
,
M.
,
Diamond
,
S.
,
Litt
,
H.
, and
Shadden
,
S. C.
,
2019
, “
Reduced Order Models for Transstenotic Pressure Drop in the Coronary Arteries
,”
ASME J. Biomech. Eng.
,
141
(
3
), p.
31005
.10.1115/1.4042184
38.
Siogkas
,
P. K.
,
Papafaklis
,
M. I.
,
Sakellarios
,
A. I.
,
Stefanou
,
K. A.
,
Bourantas
,
C. V.
,
Athanasiou
,
L. S.
,
Exarchos
,
T. P.
,
Naka
,
K. K.
,
Michalis
,
L. K.
, and
Parodi
,
O.
,
2015
, “
Patient-Specific Simulation of Coronary Artery Pressure Measurements: An In Vivo Three-Dimensional Validation Study in Humans
,”
BioMed Research International
, ed.
D. I.
Fotiadis
, Hindawi Publishing Corporation, London, UK, pp.
628
416
.
39.
Nabeel
,
P. M.
,
Kiran
,
V. R.
,
Joseph
,
J.
,
Abhidev
,
V. V.
, and
Sivaprakasam
,
M.
,
2020
, “
Local Pulse Wave Velocity: Theory, Methods, Advancements, and Clinical Applications
,”
IEEE Rev. Biomed. Eng.
,
13
, pp.
74
112
.10.1109/RBME.2019.2931587
40.
Nichols
,
W.
,
O'Rourke
,
M.
, and
Vlachopoulos
,
C.
,
2011
, “
McDonald's Blood Flow in Arteries
,”
Theoretical, Experimental and Clinical Principles
, 6th ed.,
CRC Press
, London, UK.
41.
Gosling
,
R. G.
, and
Budge
,
M. M.
,
2003
, “
Terminology for Describing the Elastic Behavior of Arteries
,”
Hypertension
,
41
(
6
), pp.
1180
1182
.10.1161/01.HYP.0000072271.36866.2A
42.
Benetos
,
A.
,
Waeber
,
B.
,
Izzo
,
J.
,
Mitchell
,
G.
,
Resnick
,
L.
,
Asmar
,
R.
, and
Safar
,
M.
,
2002
, “
Influence of Age, Risk Factors, and Cardiovascular and Renal Disease on Arterial Stiffness: Clinical Applications
,”
Am. J. Hypertens.
,
15
(
12
), pp.
1101
1108
.10.1016/S0895-7061(02)03029-7
43.
Khanafer
,
K.
,
Duprey
,
A.
,
Zainal
,
M.
,
Schlicht
,
M.
,
Williams
,
D.
, and
Berguer
,
R.
,
2011
, “
Determination of the Elastic Modulus of Ascending Thoracic Aortic Aneurysm at Different Ranges of Pressure Using Uniaxial Tensile Testing
,”
J. Thorac. Cardiovasc. Surg.
,
142
(
3
), pp.
682
686
.10.1016/j.jtcvs.2010.09.068
44.
Gradus-Pizlo
,
I.
,
Bigelow
,
B.
,
Mahomed
,
Y.
,
Sawada
,
S. G.
,
Rieger
,
K.
, and
Feigenbaum
,
H.
,
2003
, “
Left Anterior Descending Coronary Artery Wall Thickness Measured by High-Frequency Transthoracic and Epicardial Echocardiography Includes Adventitia
,”
Am. J. Cardiol.
,
91
(
1
), pp.
27
32
.10.1016/S0002-9149(02)02993-4
45.
Sun
,
Z.
,
2015
, “
Aging, Arterial Stiffness, and Hypertension
,”
Hypertension
,
65
(
2
), pp.
252
256
.10.1161/HYPERTENSIONAHA.114.03617
46.
Benetos
,
A.
,
2017
, “
Assessment of Arterial Stiffness in an Older Population: The Interest of the Cardio-Ankle Vascular Index (CAVI)
,”
Eur. Heart J. Suppl.
,
19
(
suppl_B
), pp.
B11
B16
.10.1093/eurheartj/suw059
47.
Mitchell
,
G. F.
,
Parise
,
H.
,
Benjamin
,
E. J.
,
Larson
,
M. G.
,
Keyes
,
M. J.
,
Vita
,
J. A.
,
Vasan
,
R. S.
, and
Levy
,
D.
,
2004
, “
Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women
,”
Hypertension
,
43
(
6
), pp.
1239
1245
.10.1161/01.HYP.0000128420.01881.aa
48.
Kohn
,
J. C.
,
Lampi
,
M. C.
, and
Reinhart-King
,
C. A.
,
2015
, “
Age-Related Vascular Stiffening: Causes and Consequences
,”
Front. Genet.
,
6
, p.
112
.10.3389/fgene.2015.00112
49.
Samijo
,
S. K.
,
Willigers
,
J. M.
,
Barkhuysen
,
R.
,
Kitslaar
,
P.
,
Reneman
,
R. S.
,
Brands
,
P. J.
, and
Hoeks
,
A. P. G.
,
1998
, “
Wall Shear Stress in the Human Common Carotid Artery as Function of Age and Gender
,”
Cardiovasc. Res.
,
39
(
2
), pp.
515
522
.10.1016/S0008-6363(98)00074-1
50.
Dinenno
,
F. A.
,
Jones
,
P. P.
,
Seals
,
D. R.
, and
Tanaka
,
H.
,
2000
, “
Age-Associated Arterial Wall Thickening is Related to Elevations in Sympathetic Activity in Healthy Humans
,”
Am. J. Physiol. Heart Circ. Physiol.
,
278
(
4
), pp.
H1205
H1210
.10.1152/ajpheart.2000.278.4.H1205
51.
Najjar
,
S. S.
,
Scuteri
,
A.
, and
Lakatta
,
E. G.
,
2005
, “
Arterial Aging
,”
Hypertension
,
46
(
3
), pp.
454
462
.10.1161/01.HYP.0000177474.06749.98
52.
Geest
,
J. P. V.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2004
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.10.1115/1.1824121
53.
Feng
,
J.
, and
Khir
,
A.
,
2010
, “
Determination of Wave Speed and Wave Separation in the Arteries Using Diameter and Velocity
,”
J. Biomech.
,
43
(
3
), pp.
455
462
.10.1016/j.jbiomech.2009.09.046
54.
Rennels
,
H.
,
2012
,
Pipe Flow
,
Wiley
, New York, p.
310
.
55.
Yao
,
E.
,
Kember
,
G.
, and
Hansen
,
D.
,
2015
, “
Analysis of Water Hammer Attenuation in Applications With Varying Valve Closure Times
,”
J. Eng. Mech.
,
141
(
1
), p.
04014107
.10.1061/(ASCE)EM.1943-7889.0000825
56.
Zeng
,
D.
,
Boutsianis
,
E.
,
Ammann
,
M.
,
Boomsma
,
K.
,
Wildermuth
,
S.
, and
Poulikakos
,
D.
,
2008
, “
A Study on the Compliance of a Right Coronary Artery and Its Impact on Wall Shear Stress
,”
ASME J. Biomech. Eng.
,
130
(
4
), p.
41014
.10.1115/1.2937744
57.
Torii
,
R.
,
Wood
,
N. B.
,
Hadjiloizou
,
N.
,
Dowsey
,
A. W.
,
Wright
,
A. R.
,
Hughes
,
A. D.
,
Davies
,
J.
,
Francis
,
D. P.
,
Mayet
,
J.
,
Yang
,
G. Z.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
,
2009
, “
Fluid–Structure Interaction Analysis of a Patient-Specific Right Coronary Artery With Physiological Velocity and Pressure Waveforms
,”
Commun. Numer. Methods Eng.
,
25
(
5
), pp.
565
580
.10.1002/cnm.1231
58.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2006
,
Mechanics of Biological Tissue
,
Springer-Verlag GmbH
, Heidelberg, Germany.
59.
Malvé
,
M.
,
García
,
A.
,
Ohayon
,
J.
, and
Martínez
,
M. A.
,
2012
, “
Unsteady Blood Flow and Mass Transfer of a Human Left Coronary Artery Bifurcation: FSI Vs. CFD
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
745
751
.10.1016/j.icheatmasstransfer.2012.04.009
60.
Bahrami
,
S.
, and
Norouzi
,
M.
,
2018
, “
A Numerical Study on Hemodynamics in the Left Coronary Bifurcation With Normal and Hypertension Conditions
,”
Biomech. Model. Mechanobiol.
,
17
(
6
), pp.
1785
1796
.10.1007/s10237-018-1056-1
61.
Bahrami
,
S.
, and
Norouzi
,
M.
,
2020
, “
Hemodynamic Impacts of Hematocrit Level by Two-Way Coupled FSI in the Left Coronary Bifurcation
,”
Clin. Hemorheol. Microcirc.
,
76
(
1
), pp.
9
26
.10.3233/CH-200854
62.
Figueroa
,
C. A.
,
Vignon-Clementel
,
I. E.
,
Jansen
,
K. E.
,
Hughes
,
T. J.
, and
Taylor
,
C. A.
,
2006
, “
A Coupled Momentum Method for Modeling Blood Flow in Three-Dimensional Deformable Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5685
5706
.10.1016/j.cma.2005.11.011
63.
Williamson
,
S. D.
,
Lam
,
Y.
,
Younis
,
H. F.
,
Huang
,
H.
,
Patel
,
S.
,
Kaazempur-Mofrad, and
,
M. R.
, and
Kamm
,
R. D.
,
2003
, “
On the Sensitivity of Wall Stresses in Diseased Arteries to Variable Material Properties
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
147
155
.10.1115/1.1537736
64.
Wang
,
J.
,
Paritala
,
P. K.
,
Mendieta
,
J. B.
,
Komori
,
Y.
,
Raffel
,
O. C.
,
Gu
,
Y.
, and
Li
,
Z.
,
2020
, “
Optical Coherence Tomography-Based Patient-Specific Coronary Artery Reconstruction and Fluid–Structure Interaction Simulation
,”
Biomech. Model. Mechanobiol.
,
19
(
1
), pp.
7
20
.10.1007/s10237-019-01191-9
65.
Madhavan
,
S.
, and
Kemmerling
,
E. M. C.
,
2018
, “
The Effect of Inlet and Outlet Boundary Conditions in Image-Based CFD Modeling of Aortic Flow
,”
BioMed. Eng. OnLine
,
17
(
1
), p. 66.10.1186/s12938-018-0497-1
66.
Liu
,
B.
,
Zheng
,
J.
,
Bach
,
R.
, and
Tang
,
D.
,
2015
, “
Influence of Model Boundary Conditions on Blood Flow Patterns in a Patient Specific Stenotic Right Coronary Artery
,”
BioMed. Eng. OnLine
,
14
(
Suppl 1
), pp.
S6
23
.10.1186/1475-925X-14-S1-S6
67.
Eslami
,
P.
,
Thondapu
,
V.
,
Karady
,
J.
,
Hartman
,
E. M. J.
,
Jin
,
Z.
,
Albaghdadi
,
M.
,
Lu
,
M.
,
Wentzel
,
J. J.
, and
Hoffmann
,
U.
,
2020
, “
Physiology and Coronary Artery Disease: Emerging Insights From Computed Tomography Imaging Based Computational Modeling
,”
Int. J. Cardiovasc. Imaging
,
36
(
12
), pp.
2319
2333
.10.1007/s10554-020-01954-x
68.
Failer
,
L.
,
Minakowski
,
P.
, and
Richter
,
T.
,
2021
, “
On the Impact of Fluid Structure Interaction in Blood Flow Simulations
,”
Vietnam J. Math.
,
49
(
1
), pp.
169
187
.10.1007/s10013-020-00456-6
69.
Javadzadegan
,
A.
,
Yong
,
A. S.
,
Chang
,
M.
,
Ng
,
M. K.
,
Behnia
,
M.
, and
Kritharides
,
L.
,
2017
, “
Haemodynamic Assessment of Human Coronary Arteries is Affected by Degree of Freedom of Artery Movement
,”
Comput Methods Biomech. Biomed. Eng.
,
20
(
3
), pp.
260
272
.10.1080/10255842.2016.1215439
70.
Pons
,
R.
,
Guala
,
A.
,
Rodríguez-Palomares
,
J. F.
,
Cajas
,
J. C.
,
Dux-Santoy
,
L.
,
Teixidó-Tura
,
G.
,
Molins
,
J. J.
,
Vázquez
,
M.
,
Evangelista
,
A.
, and
Martorell
,
J.
,
2020
, “
Fluid-Structure Interaction Simulations Outperform Computational Fluid Dynamics in the Description of Thoracic Aorta Haemodynamics and in the Differentiation of Progressive Dilation in Marfan Syndrome Patients
,”
R. Soc. Open Sci.
,
7
(
2
), p.
191752
.10.1098/rsos.191752
You do not currently have access to this content.