Abstract

Mechanical loading may be required for proper tendon formation. However, it is not well understood how tendon formation is impacted by the development of weight-bearing locomotor activity in the neonate. This study assessed tendon mechanical properties, and concomitant changes in weight-bearing locomotion, in neonatal rats subjected to a low thoracic spinal cord transection or a sham surgery at postnatal day (P)1. On P10, spontaneous locomotion was evaluated in spinal cord transected and sham controls to determine impacts on weight-bearing hindlimb movement. The mechanical properties of P10 Achilles tendons (ATs), as representative energy-storing, weight-bearing tendons, and tail tendons (TTs), as representative positional, non-weight-bearing tendons were evaluated. Non- and partial weight-bearing hindlimb activity decreased in spinal cord transected rats compared to sham controls. No spinal cord transected rats showed full weight-bearing locomotion. ATs from spinal cord transected rats had increased elastic modulus, while cross-sectional area trended lower compared to sham rats. TTs from spinal cord transected rats had higher stiffness and cross-sectional area. Collagen structure of ATs and TTs did not appear impacted by surgery condition, and no significant differences were detected in the collagen crimp pattern. Our findings suggest that mechanical loading from weight-bearing locomotor activity during development regulates neonatal AT lateral expansion and maintains tendon compliance, and that TTs may be differentially regulated. The onset and gradual increase of weight-bearing movement in the neonate may provide the mechanical loading needed to direct functional postnatal tendon formation.

References

1.
Lin
,
T. W.
,
Cardenas
,
L.
, and
Soslowsky
,
L. J.
,
2004
, “
Biomechanics of Tendon Injury and Repair
,”
J Biomech.
,
37
(
6
), pp.
865
877
.10.1016/j.jbiomech.2003.11.005
2.
Guerquin
,
M.-J.
,
Charvet
,
B.
,
Nourissat
,
G.
,
Havis
,
E.
,
Ronsin
,
O.
,
Bonnin
,
M.-A.
,
Ruggiu
,
M.
,
Olivera-Martinez
,
I.
,
Robert
,
N.
,
Lu
,
Y.
,
Kadler
,
K. E.
,
Baumberger
,
T.
,
Doursounian
,
L.
,
Berenbaum
,
F.
, and
Duprez
,
D.
,.
2013
, “
Transcription Factor EGR1 Directs Tendon Differentiation and Promotes Tendon Repair
,”
J. Clin. Invest.
,
123
(
8
), pp.
3564
3576
.10.1172/JCI67521
3.
Havis
,
E.
,
Bonnin
,
M. A.
,
de Lima
,
J. E.
,
Charvet
,
B.
,
Milet
,
C.
, and
Duprez
,
D.
,
2016
, “
TGFβ and FGF Promote Tendon Progenitor Fate and Act Downstream of Muscle Contraction to Regulate Tendon Differentiation During Chick Limb Development
,”
Development
,
143
(
20
), pp.
3839
3851
.10.1242/dev.136242
4.
Havis
,
E.
,
Bonnin
,
M.-A.
,
Olivera-Martinez
,
I.
,
Nazaret
,
N.
,
Ruggiu
,
M.
,
Weibel
,
J.
,
Durand
,
C.
,
Guerquin
,
M.-J.
,
Bonod-Bidaud
,
C.
,
Ruggiero
,
F.
,
Schweitzer
,
R.
, and
Duprez
,
D.
,
2014
, “
Transcriptomic Analysis of Mouse Limb Tendon Cells During Development
,”
Development
,
141
(
19
), pp.
3683
3696
.10.1242/dev.108654
5.
Lejard
,
V.
,
Blais
,
F.
,
Guerquin
,
M.-J.
,
Bonnet
,
A.
,
Bonnin
,
M.-A.
,
Havis
,
E.
,
Malbouyres
,
M.
,
Bidaud
,
C. B.
,
Maro
,
G.
,
Gilardi-Hebenstreit
,
P.
,
Rossert
,
J.
,
Ruggiero
,
F.
, and
Duprez
,
D.
,.
2011
, “
EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation
,”
J. Biol. Chem.
,
286
(
7
), pp.
5855
5867
.10.1074/jbc.M110.153106
6.
Theodossiou
,
S. K.
,
Murray
,
J. B.
, and
Schiele
,
N. R.
,
2020
, “
Cell-Cell Junctions in Developing and Adult Tendons
,”
Tissue Barriers
,
8
(
1
), p.
1695491
.10.1080/21688370.2019.1695491
7.
Berthet
,
A. B.
,
Chen
,
C.
,
Butcher
,
K. B.
,
Schneider
,
R. A.
,
Alliston
,
T.
, and
Amirtharajah
,
M.
,
2013
, “
Smad3 Binds Scleraxis and Mohawk and Regulates Tendon Development
,”
J. Orthop. Res.
,
31
(
9
), pp.
1475
1483
.10.1002/jor.22382
8.
Ito
,
Y.
,
Toriuchi
,
N.
,
Yoshitaka
,
T.
,
Ueno-Kudoh
,
H.
,
Sato
,
T.
,
Yokoyama
,
S.
,
Nishida
,
K.
,
Akimoto
,
T.
,
Takahashi
,
M.
,
Miyaki
,
S.
, and
Asahara
,
H.
,
2010
, “
The Mohawk Homeobox Gene is a Critical Regulator of Tendon Differentiation
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
23
), pp.
10538
10542
.10.1073/pnas.1000525107
9.
Liu
,
H.
,
Zhang
,
C.
,
Zhu
,
S.
,
Lu
,
P.
,
Zhu
,
T.
,
Gong
,
X.
,
Zhang
,
Z.
,
Hu
,
J.
,
Yin
,
Z.
,
Heng
,
B. C.
,
Chen
,
X.
, and
Wei Ouyang
,
H.
,.
2015
, “
Mohawk Promotes the Tenogenesis of Mesenchymal Stem Cells Through Activation of the TGFβ Signaling Pathway
,”
Stem Cells
,
33
(
2
), pp.
443
455
.10.1002/stem.1866
10.
Miyabara
,
S.
,
Yuda
,
Y.
,
Kasashima
,
Y.
,
Kuwano
,
A.
, and
Arai
,
K.
,
2014
, “
Regulation of Tenomodulin Expression Via Wnt/Beta-Catenin Signaling in Equine Bone Marrow-Derived Mesenchymal Stem Cells
,”
J. Equine Sci./Jpn Soc. Equine Sci.
,
25
(
1
), pp.
7
13
.10.1294/jes.25.7
11.
Otabe
,
K.
,
Nakahara
,
H.
,
Hasegawa
,
A.
,
Matsukawa
,
T.
,
Ayabe
,
F.
,
Onizuka
,
N.
,
Inui
,
M.
,
Takada
,
S.
,
Ito
,
Y.
,
Sekiya
,
I.
,
Muneta
,
T.
,
Lotz
,
M.
, and
Asahara
,
H.
,.
2015
, “
The Transcription Factor Mohawk Controls Tenogenic Differentiation of Bone Marrow Mesenchymal Stem Cells In Vitro and In Vivo
,”
J. Orthop. Res.
,
33
(
1
), pp.
1
8
.10.1002/jor.22750
12.
Tan
,
G.-K.
,
Pryce
,
B. A.
,
Stabio
,
A.
,
Brigande
,
J. V.
,
Wang
,
CJie.
,
Xia
,
Z.
,
Tufa
,
S. F.
,
Keene
,
D. R.
, and
Schweitzer
,
R.
,.
2020
, “
TGFβ Signaling is Critical for Maintenance of the Tendon Cell Fate
,”
eLife
,
9
, p.
e52695
.10.7554/eLife.52695
13.
Butler
,
D. L.
,
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Shearn
,
J. T.
,
Gooch
,
C.
, and
Awad
,
H.
,.
2008
, “
Functional Tissue Engineering for Tendon Repair: A Multidisciplinary Strategy Using Mesenchymal Stem Cells, Bioscaffolds, and Mechanical Stimulation
,”
J. Orthop. Res.
,
26
(
1
), pp.
1
9
.10.1002/jor.20456
14.
Chokalingam
,
K.
,
Juncosa-Melvin
,
N.
,
Hunter
,
S. A.
,
Gooch
,
C.
,
Frede
,
C.
,
Florert
,
J.
,
Bradica
,
G.
,
Wenstrup
,
R.
, and
Butler
,
D. L.
,
2009
, “
Tensile Stimulation of Murine Stem Cell-Collagen Sponge Constructs Increases Collagen Type I Gene Expression and Linear Stiffness
,”
Tissue Eng. Part A
,
15
(
9
), pp.
2561
2570
.10.1089/ten.tea.2008.0451
15.
Juncosa-Melvin
,
N.
,
Matlin
,
K. S.
,
Holdcraft
,
R. W.
,
Nirmalanandhan
,
V. S.
, and
Butler
,
D. L.
,
2007
, “
Mechanical Stimulation Increases Collagen Type I and Collagen Type III Gene Expression of Stem Cell-Collagen Sponge Constructs for Patellar Tendon Repair
,”
Tissue Eng.
,
13
(
6
), pp.
1219
1226
.10.1089/ten.2006.0339
16.
Kalson
,
N. S.
,
Holmes
,
D. F.
,
Herchenhan
,
A.
,
Lu
,
Y.
,
Starborg
,
T.
, and
Kadler
,
K. E.
,
2011
, “
Slow Stretching That Mimics Embryonic Growth Rate Stimulates Structural and Mechanical Development of Tendon-Like Tissue In Vitro
,”
Dev. Dyn.
,
240
(
11
), pp.
2520
2528
.10.1002/dvdy.22760
17.
Kuo
,
C. K.
, and
Tuan
,
R. S.
,
2008
, “
Mechanoactive Tenogenic Differentiation of Human Mesenchymal Stem Cells
,”
Tissue Eng. Part A
,
14
(
10
), pp.
1615
1627
.10.1089/ten.tea.2006.0415
18.
Mubyana
,
K.
, and
Corr
,
D. T.
,
2018
, “
Cyclic Uniaxial Tensile Strain Enhances the Mechanical Properties of Engineered, Scaffold-Free Tendon Fibers
,”
Tissue Eng. Part A
,
24
(23–24), pp.
1807
1817
.10.1089/ten.TEA.2018.0028
19.
Qin
,
T.-W.
,
Sun
,
Y.-L.
,
Thoreson
,
A. R.
,
Steinmann
,
S. P.
,
Amadio
,
P. C.
,
An
,
K.-N.
, and
Zhao
,
C.
,.
2015
, “
Effect of Mechanical Stimulation on Bone Marrow Stromal Celleseeded Tendon Slice Constructs: A Potential Engineered Tendon Patch for Rotator Cuff Repair
,”
Biomaterials
,
51
, pp.
43
50
.10.1016/j.biomaterials.2015.01.070
20.
Nirmalanandhan
,
V. S.
,
Dressler
,
M. R.
,
Shearn
,
J. T.
,
Juncosa-Melvin
,
N.
,
Rao
,
M.
,
Gooch
,
C.
,
Bradica
,
G.
, and
Butler
,
D. L.
,
2007
, “
Mechanical Stimulation of Tissue Engineered Tendon Constructs: Effect of Scaffold Materials
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
919
923
.10.1115/1.2800828
21.
Schiele
,
N. R.
,
Marturano
,
J. E.
, and
Kuo
,
C. K.
,
2013
, “
Mechanical Factors in Embryonic Tendon Development: Potential Cues for Stem Cell Tenogenesis
,”
Curr. Opin. Biotechnol.
,
24
(
5
), pp.
834
840
.10.1016/j.copbio.2013.07.003
22.
Scott
,
A.
,
Danielson
,
P.
,
Abraham
,
T.
,
Fong
,
G.
,
Sampaio
,
A. V.
, and
Underhill
,
T. M.
,
2011
, “
Mechanical Force Modulates Scleraxis Expression in Bioartificial Tendons
,”
J. Musculoskelet. Neuronal. Interact.
,
11
(
2
), pp.
124
132
.https://pubmed.ncbi.nlm.nih.gov/21625049/
23.
Shearn
,
J. T.
,
Juncosa-Melvin
,
N.
,
Boivin
,
G. P.
,
Galloway
,
M. T.
,
Goodwin
,
W.
,
Gooch
,
C.
,
Dunn
,
M. G.
, and
Butler
,
D. L.
,
2007
, “
Mechanical Stimulation of Tendon Tissue Engineered Constructs: Effects on Construct Stiffness, Repair Biomechanics, and Their Correlation
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
848
854
.10.1115/1.2800769
24.
Subramony
,
S. D.
,
Dargis
,
B. R.
,
Castillo
,
M.
,
Azeloglu
,
E. U.
,
Tracey
,
M. S.
,
Su
,
A.
, and
Lu
,
H. H.
,
2013
, “
The Guidance of Stem Cell Differentiation by Substrate Alignment and Mechanical Stimulation
,”
Biomaterials
,
34
(
8
), pp.
1942
1953
.10.1016/j.biomaterials.2012.11.012
25.
Herchenhan
,
A.
,
Kalson
,
N. S.
,
Holmes
,
D. F.
,
Hill
,
P.
,
Kadler
,
K. E.
, and
Margetts
,
L.
,
2012
, “
Tenocyte Contraction Induces Crimp Formation in Tendon-Like Tissue
,”
Biomech. Model Mechanobiol.
,
11
(
3–4
), pp.
449
459
.10.1007/s10237-011-0324-0
26.
Maeda
,
T.
,
Sakabe
,
T.
,
Sunaga
,
A.
,
Sakai
,
K.
,
Rivera
,
A. L.
,
Keene
,
D. R.
,
Sasaki
,
T.
,
Stavnezer
,
E.
,
Iannotti
,
J.
,
Schweitzer
,
R.
,
Ilic
,
D.
,
Baskaran
,
H.
, and
Sakai
,
T.
,.
2011
, “
Conversion of Mechanical Force Into TGF-Beta-Mediated Biochemical Signals
,”
Curr. Biol.
,
21
(
11
), pp.
933
941
.10.1016/j.cub.2011.04.007
27.
Schweitzer
,
R.
,
Zelzer
,
E.
, and
Volk
,
T.
,
2010
, “
Connecting Muscles to Tendons: Tendons and Musculoskeletal Development in Flies and Vertebrates
,”
Development
,
137
(
17
), pp.
2807
2817
.10.1242/dev.047498
28.
Marturano
,
J. E.
,
Arena
,
J. D.
,
Schiller
,
Z. A.
,
Georgakoudi
,
I.
, and
Kuo
,
C. K.
,
2013
, “
Characterization of Mechanical and Biochemical Properties of Developing Embryonic Tendon
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
16
), pp.
6370
6375
.10.1073/pnas.1300135110
29.
McBride
,
D. J.
,
Trelstad
,
R. L.
, and
Silver
,
F. H.
,
1988
, “
Structural and Mechanical Assessment of Developing Chick Tendon
,”
Int. J. Biol. Macromol.
,
10
(
4
), pp.
194
200
.10.1016/0141-8130(88)90048-7
30.
Ansorge
,
H. L.
,
Adams
,
S.
,
Birk
,
D. E.
, and
Soslowsky
,
L. J.
,
2011
, “
Mechanical, Compositional, and Structural Properties of the Post-Natal Mouse Achilles Tendon
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1904
–19
13
.10.1007/s10439-011-0299-0
31.
Theodossiou
,
S. K.
,
Bozeman
,
A. L.
,
Burgett
,
N.
,
Brumley
,
M. R.
,
Swann
,
H. E.
,
Raveling
,
A. R.
,
Becker
,
J. J.
, and
Schiele
,
N. R.
,
2019
, “
Onset of Neonatal Locomotor Behavior and the Mechanical Development of Achilles and Tail Tendons
,”
J. Biomech.
,
96
, p.
109354
.10.1016/j.jbiomech.2019.109354
32.
Waugh
,
C. M.
,
Blazevich
,
A. J.
,
Fath
,
F.
, and
Korff
,
T.
,
2012
, “
Age-Related Changes in Mechanical Properties of the Achilles Tendon
,”
J. Anat.
,
220
(
2
), pp.
144
155
.10.1111/j.1469-7580.2011.01461.x
33.
Huang
,
A. H.
,
Riordan
,
T. J.
,
Pryce
,
B.
,
Weibel
,
J. L.
,
Watson
,
S. S.
,
Long
,
F.
,
Lefebvre
,
V.
,
Harfe
,
B. D.
,
Stadler
,
H. S.
,
Akiyama
,
H.
,
Tufa
,
S. F.
,
Keene
,
D. R.
, and
Schweitzer
,
R.
,
2015
, “
Musculoskeletal Integration at the Wrist Underlies the Modular Development of Limb Tendons
,”
Development
,
142
(
14
), pp.
2431
2441
.10.1242/dev.122374
34.
Schwartz
,
A. G.
,
Long
,
F.
, and
Thomopoulos
,
S.
,
2015
, “
Enthesis Fibrocartilage Cells Originate From a Population of Hedgehog-Responsive Cells Modulated by the Loading Environment
,”
Development
,
142
(
1
), pp.
196
206
.10.1242/dev.112714
35.
Pan
,
X. S.
,
Li
,
J.
,
Brown
,
E. B.
, and
Kuo
,
C. K.
,
2018
, “
Embryo Movements Regulate Tendon Mechanical Property Development
,”
Philos. Trans. R. Soc. B
, 373(1759), p.
20170325
.10.1098/rstb.2017.0325
36.
Thomopoulos
,
S.
,
Kim
,
H. M.
,
Rothermich
,
S. Y.
,
Biederstadt
,
C.
,
Das
,
R.
, and
Galatz
,
L. M.
,
2007
, “
Decreased Muscle Loading Delays Maturation of the Tendon Enthesis During Postnatal Development
,”
J. Orthop. Res.
,
25
(
9
), pp.
1154
1163
.10.1002/jor.20418
37.
Swann
,
H. E.
, and
Brumley
,
M. R.
,
2018
, “
Locomotion and Posture Development in Immature Male and Female Rats (Rattus norvegicus): Comparison of Sensory-Enriched Versus Sensory-Deprived Testing Environments
,”
J. Comp. Psychol.
, 133(2), pp.
183
196
.10.1037/com0000147
38.
Schwartz
,
A. G.
,
Lipner
,
J. H.
,
Pasteris
,
J. D.
,
Genin
,
G. M.
, and
Thomopoulos
,
S.
,
2013
, “
Muscle Loading is Necessary for the Formation of a Functional Tendon Enthesis
,”
Bone
,
55
(
1
), pp.
44
51
.10.1016/j.bone.2013.03.010
39.
Khayyeri
,
H.
,
Blomgran
,
P.
,
Hammerman
,
M.
,
Turunen
,
M. J.
,
Löwgren
,
A.
,
Guizar-Sicairos
,
M.
,
Aspenberg
,
P.
, and
Isaksson
,
H.
,.
2017
, “
Achilles Tendon Compositional and Structural Properties Are Altered After Unloading by Botox
,”
Sci. Rep.
,
7
(
1
), p.
13067
.10.1038/s41598-017-13107-7
40.
Doherty
,
T. M.
,
Bozeman
,
A. L.
,
Roth
,
T. L.
, and
Brumley
,
M. R.
,
2019
, “
DNA Methylation and Behavioral Changes Induced by Neonatal Spinal Transection
,”
Infant Behav. Dev.
,
57
, p.
101381
.10.1016/j.infbeh.2019.101381
41.
Raveling
,
A. R.
,
Theodossiou
,
S. K.
, and
Schiele
,
N. R.
,
2018
, “
A 3D Printed Mechanical Bioreactor for Investigating Mechanobiology and Soft Tissue Mechanics
,”
MethodsX
,
5
, pp.
924
932
.10.1016/j.mex.2018.08.001
42.
Bruneau
,
A.
,
Champagne
,
N.
,
Cousineau-Pelletier
,
P.
,
Parent
,
G.
, and
Langelier
,
E.
,
2010
, “
Preparation of Rat Tail Tendons for Biomechanical and Mechanobiological Studies
,”
J. Visual. Exp. JoVE
, (41), p.
2176
.10.3791/2176
43.
Parent
,
G.
,
Cyr
,
M.
,
Desbiens-Blais
,
F.
, and
Langelier
,
E.
,
2010
, “
Bias and Precision of Algorithms in Estimating the Cross-Sectional Area of Rat Tail Tendons
,”
Meas. Sci. Technol.
,
21
(
12
), p.
125802
.10.1088/0957-0233/21/12/125802
44.
Lee
,
S.-Y.
,
Chieh
,
H.-F.
,
Lin
,
C.-J.
,
Jou
,
I.-M.
,
Sun
,
Y.-N.
,
Kuo
,
L.-C.
,
Wu
,
P.-T.
, and
Su
,
F.-C.
,
2017
, “
Characteristics of Sonography in a Rat Achilles Tendinopathy Model: Possible Non-Invasive Predictors of Biomechics
,”
Sci. Rep.
,
7
(
1
), p.
5100
.10.1038/s41598-017-05466-y
45.
Javidi
,
M.
,
McGowan
,
C. P.
,
Schiele
,
N. R.
, and
Lin
,
D. C.
,
2019
, “
Tendons From Kangaroo Rats Are Exceptionally Strong and Tough
,”
Sci. Rep.
,
9
(
1
), p.
8196
.10.1038/s41598-019-44671-9
46.
Schiele
,
N. R.
, von Flotow, F., Tochka, Z. L., Hockaday, L. A., Marturano, J. E., Thibodeau, J. J., Kuo, C. K., 2015, “Actin Cytoskeleton Contributes to the Elastic Modulus of Embryonic Tendon During Early Development,”
J. Orthop. Res.
, 33(6), pp. 874–881.10.1002/jor.22880
47.
Chen
,
J.
,
Zhang
,
W.
,
Liu
,
Z.
,
Zhu
,
T.
,
Shen
,
W.
,
Ran
,
J.
,
Tang
,
Q.
,
Gong
,
X.
,
Backman
,
L. J.
,
Chen
,
X.
,
Chen
,
X.
,
Wen
,
F.
, and
Ouyang
,
H.
,
2016
, “
Characterization and Comparison of Post-Natal Rat Achilles Tendon-Derived Stem Cells at Different Development Stages
,”
Sci. Rep.
,
6
(
1
), p. 22946.10.1038/srep22946
48.
Shearer
,
T.
,
Thorpe
,
C. T.
, and
Screen
,
H. R. C.
,
2017
, “
The Relative Compliance of Energy-Storing Tendons May Be Due to the Helical Fibril Arrangement of Their Fascicles
,”
J. R. Soc. Interface
,
14
(
133
), p.
20170261
. 10.1098/rsif.2017.0261
49.
Spiesz
,
E. M.
,
Thorpe
,
C. T.
,
Thurner
,
P. J.
, and
Screen
,
H. R. C.
,
2018
, “
Structure and Collagen Crimp Patterns of Functionally Distinct Equine Tendons, Revealed by Quantitative Polarised Light Microscopy (qPLM)
,”
Acta Biomater.
,
70
, pp.
281
292
.10.1016/j.actbio.2018.01.034
50.
Thorpe
,
C. T.
,
Klemt
,
C.
,
Riley
,
G. P.
,
Birch
,
H. L.
,
Clegg
,
P. D.
, and
Screen
,
H. R. C.
,
2013
, “
Helical Sub-Structures in Energy-Storing Tendons Provide a Possible Mechanism for Efficient Energy Storage and Return
,”
Acta Biomater.
,
9
(
8
), pp.
7948
7956
.10.1016/j.actbio.2013.05.004
51.
Choi
,
R. K.
,
Smith
,
M. M.
,
Smith
,
S.
,
Little
,
C. B.
, and
Clarke
,
E. C.
,
2019
, “
Functionally Distinct Tendons Have Different Biomechanical, Biochemical and Histological Responses to In Vitro Unloading
,”
J. Biomech.
,
95
, p.
109321
.10.1016/j.jbiomech.2019.109321
52.
Eekhoff
,
J. D.
,
Fang
,
F.
,
Kahan
,
L. G.
,
Espinosa
,
G.
,
Cocciolone
,
A. J.
,
Wagenseil
,
J. E.
, Mecham, R. P., and Lake, S. P.,
2017
, “
Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration
,”
ASME J. Biomech. Eng.
,
139
(
11
), p.
111003
.10.1115/1.4037932
53.
Herod
,
T. W.
,
Chambers
,
N. C.
, and
Veres
,
S. P.
,
2016
, “
Collagen Fibrils in Functionally Distinct Tendons Have Differing Structural Responses to Tendon Rupture and Fatigue Loading
,”
Acta Biomater.
,
42
, pp.
296
307
.10.1016/j.actbio.2016.06.017
54.
Quigley
,
A. S.
,
Bancelin
,
S.
,
Deska-Gauthier
,
D.
,
Legare
,
F.
,
Kreplak
,
L.
, and
Veres
,
S. P.
,
2018
, “
In Tendons, Differing Physiological Requirements Lead to Functionally Distinct Nanostructures
,”
Sci. Rep.
,
8
(
1
), p.
4409
.10.1038/s41598-018-22741-8
55.
Marturano
,
J. E.
,
Xylas
,
J. F.
,
Sridharan
,
G. V.
,
Georgakoudi
,
I.
, and
Kuo
,
C. K.
,
2014
, “
Lysyl Oxidase-Mediated Collagen Crosslinks May Be Assessed as Markers of Functional Properties of Tendon Tissue Formation
,”
Acta Biomater.
,
10
(
3
), pp.
1370
1379
.10.1016/j.actbio.2013.11.024
56.
Kondratko-Mittnacht
,
J.
,
Duenwald-Kuehl
,
S.
,
Lakes
,
R.
, and
Vanderby
,
R.
, Jr.
,
2015
, “
Shear Load Transfer in High and Low Stress Tendons
,”
J. Mech. Behav. Biomed. Mater.
,
45
, pp.
109
–1
20
.10.1016/j.jmbbm.2015.01.021
57.
Screen
,
H. R. C.
,
Toorani
,
S.
, and
Shelton
,
J. C.
,
2013
, “
Microstructural Stress Relaxation Mechanics in Functionally Different Tendons
,”
Med. Eng. Phys.
,
35
(
1
), pp.
96
102
.10.1016/j.medengphy.2012.04.004
58.
Howell
,
K.
,
Chien
,
C.
,
Bell
,
R.
,
Laudier
,
D.
,
Tufa
,
S. F.
,
Keene
,
D. R.
,
Andarawis-Puri
,
N.
, and
Huang
,
A. H.
,
2017
, “
Novel Model of Tendon Regeneration Reveals Distinct Cell Mechanisms Underlying Regenerative and Fibrotic Tendon Healing
,”
Sci. Rep.
,
7
(
1
), p.
srep45238
. 10.1038/srep45238
59.
Popov
,
C.
,
Burggraf
,
M.
,
Kreja
,
L.
,
Ignatius
,
A.
,
Schieker
,
M.
, and
Docheva
,
D.
,
2015
, “
Mechanical Stimulation of Human Tendon Stem/Progenitor Cells Results in Upregulation of Matrix Proteins, Integrins and MMPs, and Activation of p38 and ERK1/2 Kinases
,”
BMC Mol. Biol.
,
16
, p.
6
.10.1186/s12867-015-0036-6
60.
Yang
,
G.
,
Rothrauff
,
B. B.
,
Lin
,
H.
,
Gottardi
,
R.
,
Alexander
,
P. G.
, and
Tuan
,
R. S.
,
2013
, “
Enhancement of Tenogenic Differentiation of Human Adipose Stem Cells by Tendon-Derived Extracellular Matrix
,”
Biomaterials
,
34
(
37
), pp.
9295
306
.10.1016/j.biomaterials.2013.08.054
61.
Kalson
,
N. S.
,
Holmes
,
D. F.
,
Kapacee
,
Z.
,
Otermin
,
I.
,
Lu
,
Y.
,
Ennos
,
R. A.
,
Canty-Laird
,
E. G.
, and
Kadler
,
K. E.
,
2010
, “
An Experimental Model for Studying the Biomechanics of Embryonic Tendon: Evidence That the Development of Mechanical Properties Depends on the Actinomyosin Machinery
,”
Matrix Biol.
,
29
(
8
), pp.
678
689
.10.1016/j.matbio.2010.08.009
62.
Liu
,
C. F.
,
Aschbacher-Smith
,
L.
,
Barthelery
,
N. J.
,
Dyment
,
N.
,
Butler
,
D.
, and
Wylie
,
C.
,
2012
, “
Spatial and Temporal Expression of Molecular Markers and Cell Signals During Normal Development of the Mouse Patellar Tendon
,”
Tissue Eng. Part A
,
18
(
5–6
), pp.
598
608
.10.1089/ten.tea.2011.0338
63.
Chaplin
,
D. M.
, and
Greenlee
,
T. K.
, Jr.
,
1975
, “
The Development of Human Digital Tendons
,”
J. Anat.
,
120
, pp.
253
274
. https://pubmed.ncbi.nlm.nih.gov/1201962/
64.
Kastelic
,
J.
,
Galeski
,
A.
, and
Baer
,
E.
,
1978
, “
The Multicomposite Structure of Tendon
,”
Connect Tissue Res.
,
6
(
1
), pp.
11
23
.10.3109/03008207809152283
65.
Sun
,
H. B.
,
Li
,
Y.
,
Fung
,
D. T.
,
Majeska
,
R. J.
,
Schaffler
,
M. B.
, and
Flatow
,
E. L.
,
2008
, “
Coordinate Regulation of IL-1beta and MMP-13 in Rat Tendons Following Subrupture Fatigue Damage
,”
Clin. Orthop. Relat. Res.
,
466
(
7
), pp.
1555
1561
.10.1007/s11999-008-0278-4
66.
Spiesz
,
E. M.
,
Thorpe
,
C. T.
,
Chaudhry
,
S.
,
Riley
,
G. P.
,
Birch
,
H. L.
,
Clegg
,
P. D.
, and
Screen
,
H. R. C.
,
2015
, “
Tendon Extracellular Matrix Damage, Degradation and Inflammation in Response to In Vitro Overload Exercise
,”
J. Orthop. Res.
,
33
(
6
), pp.
889
897
.10.1002/jor.22879
67.
Thorpe
,
C. T.
,
Chaudhry
,
S.
,
Lei
,
I. I.
,
Varone
,
A.
,
Riley
,
G. P.
,
Birch
,
H. L.
,
Clegg
,
P. D.
, and
Screen
,
H. R. C.
,
2015
, “
Tendon Overload Results in Alterations in Cell Shape and Increased Markers of Inflammation and Matrix Degradation
,”
Scand. J. Med. Sci. Sports
,
25
(
4
), pp.
e381
e91
.10.1111/sms.12333
68.
Yang
,
G.
,
Im
,
H. J.
, and
Wang
,
J. H.
,
2005
, “
Repetitive Mechanical Stretching Modulates IL-1beta Induced COX-2, MMP-1 Expression, and PGE2 Production in Human Patellar Tendon Fibroblasts
,”
Gene
,
363
, pp.
166
–1
72
.10.1016/j.gene.2005.08.006
69.
Thomopoulos
,
S.
,
Williams
,
G. R.
, and
Soslowsky
,
L. J.
,
2003
, “
Tendon to Bone Healing: Differences in Biomechanical, Structural, and Compositional Properties Due to a Range of Activity Levels
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
106
113
.10.1115/1.1536660
70.
Freedman
,
B. R.
,
Fryhofer
,
G. W.
,
Salka
,
N. S.
,
Raja
,
H. A.
,
Hillin
,
C. D.
,
Nuss
,
C. A.
,
Farber
,
D. C.
, and
Soslowsky
,
L. J.
,
2017
, “
Mechanical, Histological, and Functional Properties Remain Inferior in Conservatively Treated Achilles Tendons in Rodents: Long Term Evaluation
,”
J. Biomech.
,
56
, pp.
55
60
.10.1016/j.jbiomech.2017.02.030
71.
Blumberg
,
M. S.
, and
Lucas
,
D. E.
,
1994
, “
Dual Mechanisms of Twitching During Sleep in Neonatal Rats
,”
Behav. Neuro
,
108
(
6
), pp.
1196
1202
.10.1037/0735-7044.108.6.1196
72.
Weber
,
E. D.
, and
Stelzner
,
D. J.
,
1977
, “
Behavioral Effects of Spinal Cord Transection in the Developing Rat
,”
Brain Res.
,
125
(
2
), pp.
241
255
.10.1016/0006-8993(77)90618-7
73.
Yuan
,
Q.
,
Su
,
H.
,
Chiu
,
K.
,
Wu
,
W.
, and
Lin
,
Z.
,
2013
, “
Contrasting Neuropathology and Functional Recovery After Spinal Cord Injury in Developing and Adult Rats
,”
Neurosci. Bull.
,
29
(
4
), pp.
509
516
.10.1007/s12264-013-1356-5
74.
Strain
,
M. M.
,
Kauer
,
S. D.
,
Kao
,
T.
, and
Brumley
,
M. R.
,
2014
, “
Inter- and Intralimb Adaptations to a Sensory Perturbation During Activation of the Serotonin System After a Low Spinal Cord Transection in Neonatal Rats
,”
Front. Neural Circuits
,
8
, p.
80
.10.3389/fncir.2014.00080
75.
Thompson
,
F. J.
,
Parmer
,
R.
, and
Reier
,
P. J.
,
1998
, “
Alteration in Rate Modulation of Reflexes to Lumbar Motorneurons After Midthoracic Spinal Cord Injury in the Rat
,”
J. Neurotrauma
,
15
(
7
), pp.
495
508
.10.1089/neu.1998.15.495
76.
Celichowski
,
J.
,
Mrówczyński
,
W.
,
Krutki
,
P.
,
Górska
,
T.
,
Majczyński
,
H.
, and
Sławińska
,
U.
,
2006
, “
Changes in Motor Units Contractile Properties of the Rat Medial Gastrocnemius Muscle After Spinal Cord Transection
,”
Exp. Physiol.
,
91
(
5
), pp.
887
95
.10.1113/expphysiol.2005.033076
77.
Mrówczyński
,
W.
,
Celichowski
,
J.
,
Krutki
,
P.
,
Cabaj
,
A.
,
Sławińska
,
U.
, and
Majczyński
,
H.
,
2011
, “
Changes of the Force-Frequency Relationship in the Rat Medial Gastrocnemius Muscle After Total Transection and Hemisection of the Spinal Cord
,”
J. Neurophysiol.
,
105
(
6
), pp.
2943
2950
.10.1152/jn.00687.2010
78.
Mikic
,
B.
,
Amadei
,
E.
,
Rossmeier
,
K.
, and
Bierwert
,
L.
,
2010
, “
Sex Matters in the Establishment of Murine Tendon Composition and Material Properties During Growth
,”
J Orthop Res
,
28
(
5
), pp.
631
8
.10.1002/jor.21034
79.
Pardes
,
A. M.
,
Beach
,
Z. M.
,
Raja
,
H.
,
Rodriguez
,
A. B.
,
Freedman
,
B. R.
, and
Soslowsky
,
L. J.
,
2017
, “
Aging Leads to Inferior Achilles Tendon Mechanics and Altered Ankle Function in Rodents
,”
J. Biomech.
,
60
, pp.
30
38
.10.1016/j.jbiomech.2017.06.008
You do not currently have access to this content.