Abstract

To examine segment and joint attitudes when using image-based motion capture, it is necessary to determine the rigid body transformation parameters from an inertial reference frame to a reference frame fixed in a body segment. Determine the rigid body transformation parameters must account for errors in the coordinates measured in both reference frames, a total least-squares problem. This study presents a new derivation that shows that a singular value decomposition-based method provides a total least-squares estimate of rigid body transformation parameters. The total least-squares method was compared with an algebraic method for determining rigid body attitude (TRIAD method). Two cases were examined: case 1 where the positions of a marker cluster contained noise after the transformation, and case 2 where the positions of a marker cluster contained noise both before and after the transformation. The white noise added to position data had a standard deviation from zero to 0.002 m, with 101 noise levels examined. For each noise level, 10 000 criterion attitude matrices were generated. Errors in estimating rigid body attitude were quantified by computing the angle, error angle, required to align the estimated rigid body attitude with the actual rigid body attitude. For both methods and cases, as the noise level increased the error angle increased, with errors larger for case 2 compared with case 1. The singular value decomposition (SVD)-based method was superior to the TRIAD algorithm for all noise levels and both cases, and provided a total least-squares estimate of body attitude.

References

1.
Woltring
,
H. J.
,
1991
, “
Representation and Calculation of 3D Joint Movement
,”
Hum. Mov. Sci.
,
10
(
5
), pp.
603
616
.10.1016/0167-9457(91)90048-3
2.
Spoor
,
C. W.
, and
Veldpaus
,
F. E.
,
1980
, “
Rigid Body Motion Calculated From Spatial co-Ordinates of Markers
,”
J. Biomech.
,
13
(
4
), pp.
391
393
.10.1016/0021-9290(80)90020-2
3.
Veldpaus
,
F. E.
,
Woltring
,
H. J.
, and
Dortmans
,
L. J. M. G.
,
1988
, “
A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-ordinates
,”
J. Biomech.
,
21
(
1
), pp.
45
54
.10.1016/0021-9290(88)90190-X
4.
Arun
,
K. S.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
,
1987
, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE T. Pattern. Anal.
,
PAMI-9
(
5
), pp.
698
700
.10.1109/TPAMI.1987.4767965
5.
Challis
,
J. H.
,
1995
, “
A Procedure for Determining Rigid Body Transformation Parameters
,”
J. Biomech.
,
28
(
6
), pp.
733
737
.10.1016/0021-9290(94)00116-L
6.
Draper
,
N. R.
, and
Smith
,
H.
,
1981
,
Applied Regression Analysis
,
Wiley
,
New York
.
7.
Wu
,
G.
,
van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion–Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
8.
Van Sint Jan
,
S.
, and
Della Croce
,
U.
,
2005
, “
Identifying the Location of Human Skeletal Landmarks: Why Standardized Definitions Are Necessary—A Proposal (Letter to the Editor
),”
Clin. Biomech.
,
20
(
6
), pp.
659
660
.10.1016/j.clinbiomech.2005.02.002
9.
Stagni
,
R.
,
Fantozzi
,
S.
, and
Cappello
,
A.
,
2006
, “
Propagation of Anatomical Landmark Misplacement to Knee Kinematics: Performance of Single and Double Calibration
,”
Gait Posture
,
24
(
2
), pp.
137
141
.10.1016/j.gaitpost.2006.08.001
10.
Topley
,
M.
, and
Richards
,
J. G.
,
2020
, “
A Comparison of Currently Available Optoelectronic Motion Capture Systems
,”
J. Biomech.
,
106
, p.
109820
.10.1016/j.jbiomech.2020.109820
11.
Markovsky
,
I.
, and
Van Huffel
,
S.
,
2007
, “
Overview of Total Least-Squares Methods
,”
Signal Process.
,
87
(
10
), pp.
2283
2302
.10.1016/j.sigpro.2007.04.004
12.
Golub
,
G. H.
, and
Reinsch
,
C.
,
1971
, “
Singular Value Decomposition and Least Squares Solutions
,”
Handbook for Automatic Computations Vol II: Linear Algebra
,
J. H.
Wilkinson
and
C.
Reinsch
, eds.,
Springer
,
Heidelberg, Germany
, pp.
131
154
.
13.
Black
,
H. D.
,
1964
, “
A Passive System for Determining the Attitude of a Satellite
,”
AIAA J.
,
2
(
7
), pp.
1350
1351
.10.2514/3.2555
14.
Wade
,
F. E.
,
Lewis
,
G. S.
, and
Piazza
,
S. J.
,
2019
, “
Estimates of Achilles Tendon Moment Arm Differ When Axis of Ankle Rotation is Derived From Ankle Motion
,”
J. Biomech.
,
90
, pp.
71
77
.10.1016/j.jbiomech.2019.04.032
15.
Lu
,
T.-W.
, and
O'Connor
,
J. J.
,
1999
, “
Bone Position Estimation From Skin Marker co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
,
32
(
2
), pp.
129
134
.10.1016/S0021-9290(98)00158-4
16.
Reinschmidt
,
C.
,
van den Bogert
,
A. J.
,
Nigg
,
B. M.
,
Lundberg
,
A.
, and
Murphy
,
N.
,
1997
, “
Effect of Skin Movement on the Analysis of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
30
(
7
), pp.
729
732
.10.1016/S0021-9290(97)00001-8
17.
Serrien
,
B.
,
Pataky
,
T.
,
Baeyens
,
J.
, and
Cattrysse
,
E.
,
2020
, “
Bayesian versus least-Squares Inverse Kinematics: Simulation Experiments With Models of 3D Rigid Body Motion and 2D Models Including Soft-Tissue Artefacts
,”
J. Biomech
,.,
109
, p.
109902
.10.1016/j.jbiomech.2020.109902
18.
Ding
,
Z.
,
Güdel
,
M.
,
Smith
,
S. H. L.
,
Ademefun
,
R. A.
, and
Bull
,
M. J.
,
2020
, “
A Femoral Clamp to Reduce Soft Tissue Artifact: Accuracy and Reliability in Measuring Three-Dimensional Knee Kinematics During Gait
,”
ASME J. Biomech. Eng.
,
142
(
4
), p.
044501
.10.1115/1.4045115
19.
van Huffel
,
S.
, and
Vandewalle
,
J.
,
1991
,
The Total Least Squares Problem: Computational Aspects and Analysis
,
Siam
,
Philadelphia, PA
.
You do not currently have access to this content.