Abstract

Pulmonary hypertension (PH) is one of the least understood and highly elusive cardiovascular conditions associated with elevated pulmonary arterial pressure. Although the disease mechanisms are not completely understood, evidence has accumulated from human and animal studies that irreversible processes of pulmonary arterial wall damage, compensated by stress-mediated growth, play critical roles in eliciting the mechanisms of disease progression. The aim of this study is to develop a thermodynamic modeling structure of the pulmonary artery to consider coupled plastic-degradation-growth irreversible processes to investigate the mechanical roles of the dissipative phenomena in the disease progression. The proposed model performs a model parameter study of plastic deformation and degradation processes coupled with dissipative growth subjected to elevated pulmonary arterial pressure and computationally generates in silico simulations of PH progression using the clinical features of PH, found in human morphological and mechanical data. The results show that considering plastic deformation can provide a much better fitting of the ex vivo inflation tests than a widely used pure hyperelastic model in higher pressure conditions. In addition, the parameter sensitivity study illustrates that arterial damage and growth cause the increased stiffness, and the full simulation (combining elastic-plastic-degradation-growth models) reveals a key postpathological recovery process of compensating vessel damage by vascular adaptation by reducing the rate of vessel dilation and mediating vascular wall stress. Finally, the simulation results of luminal enlargement, arterial thickening, and arterial stiffness for an anisotropic growth are found to be close to the values from the literature.

References

1.
Tuder
,
R. M.
,
2017
, “
Pulmonary Vascular Remodeling in Pulmonary Hypertension
,”
Cell Tissue Res.
,
367
(
3
), pp.
643
649
.10.1007/s00441-016-2539-y
2.
Rajagopal
,
S.
,
Forsha
,
D. E.
,
Risum
,
N.
,
Hornik
,
C. P.
,
Poms
,
A. D.
,
Fortin
,
T. A.
,
Tapson
,
V. F.
,
Velazquez
,
E. J.
,
Kisslo
,
J.
, and
Samad
,
Z.
,
2014
, “
Comprehensive Assessment of Right Ventricular Function in Patients With Pulmonary Hypertension With Global Longitudinal Peak Systolic Strain Derived From Multiple Right Ventricular Views
,”
J. Am. Soc. Echocardiogr.
,
27
(
6
), pp.
657
665.
.10.1016/j.echo.2014.02.001
3.
Thenappan
,
T.
,
Chan
,
S. Y.
, and
Weir
,
E. K.
,
2018
, “
Role of Extracellular Matrix in the Pathogenesis of Pulmonary Arterial Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
315
(
5
), pp.
H1322
H1331
.10.1152/ajpheart.00136.2018
4.
Todorovich-Hunter
,
L.
,
Dodo
,
H.
,
Ye
,
C.
,
McCready
,
L.
,
Keeley
,
F. W.
, and
Rabinovitch
,
M.
,
1992
, “
Increased Pulmonary Artery Elastolytic Activity in Adult Rats With Monocrotaline-Induced Progressive Hypertensive Pulmonary Vascular Disease Compared With Infant Rats With Nonprogressive Disease
,”
Am. Rev. Respir. Disease
,
146
(
1
), pp.
213
223
.10.1164/ajrccm/146.1.213
5.
Chelladurai
,
P.
,
Seeger
,
W.
, and
Pullamsetti
,
S. S.
,
2012
, “
Matrix Metalloproteinases and Their Inhibitors in Pulmonary Hypertension
,”
Eur. Respir. J.
,
40
(
3
), pp.
766
782
.10.1183/09031936.00209911
6.
Tan
,
Y.
,
Tseng
,
P.-O.
,
Wang
,
D.
,
Zhang
,
H.
,
Hunter
,
K.
,
Hertzberg
,
J.
,
Stenmark
,
K. R.
, and
Tan
,
W.
,
2014
, “
Stiffening-Induced High Pulsatility Flow Activates Endothelial Inflammation Via a TLR2/NF-κB Pathway
,”
PLoS One
,
9
(
7
), p.
e102195
.10.1371/journal.pone.0102195
7.
Cowan
,
K. N.
,
Heilbut
,
A.
,
Humpl
,
T.
,
Lam
,
C.
,
Ito
,
S.
, and
Rabinovitch
,
M.
,
2000
, “
Complete Reversal of Fatal Pulmonary Hypertension in Rats by a Serine Elastase Inhibitor
,”
Nat. Med.
,
6
(
6
), pp.
698
702
.10.1038/76282
8.
Rabinovitch
,
M.
,
Guignabert
,
C.
,
Humbert
,
M.
, and
Nicolls
,
M. R.
,
2014
, “
Inflammation and Immunity in the Pathogenesis of Pulmonary Arterial Hypertension
,”
Circ. Res.
,
115
(
1
), pp.
165
175
.10.1161/CIRCRESAHA.113.301141
9.
Marino
,
M.
,
Converse
,
M. I.
,
Monson
,
K. I.
, and
Wriggers
,
P.
,
2019
, “
Molecular-Level Collagen Damage Explains Softening and Failure of Arterial Tissues: A Quantitative Interpretation of CHP Data With a Novel Elasto-Damage Model
,”
J. Mech. Behav. Biomed. Mater.
,
97
, pp.
254
271
.10.1016/j.jmbbm.2019.04.022
10.
Gasser
,
T. C.
,
2017
, “
Damage in Vascular Tissues and Its Modeling
,”
Material Parameter Identification and Inverse Problems in Soft Tissue Biomechanics
, Springer, Cham, Switzerland, pp.
85
118
. 10.1007/978-3-319-45071-1
11.
Li
,
W.
,
2016
, “
Damage Models for Soft Tissues: A Survey
,”
J. Med. Biol. Eng.
,
36
(
3
), pp.
285
307
.10.1007/s40846-016-0132-1
12.
Peña
,
E.
, and
Doblaré
,
M.
,
2009
, “
An Anisotropic Pseudo-Elastic Approach for Modelling Mullins Effect in Fibrous Biological Materials
,”
Mech. Res. Commun.
,
36
(
7
), pp.
784
790
.10.1016/j.mechrescom.2009.05.006
13.
Gautieri
,
A.
,
Vesentini
,
S.
,
Redaelli
,
A.
, and
Buehler
,
M. J.
,
2009
, “
Intermolecular Slip Mechanism in Tropocollagen Nanofibrils
,”
Int. J. Mater. Res.
,
100
(
7
), pp.
921
925
.10.3139/146.110132
14.
Lammers
,
S. R.
,
Kao
,
P. H.
,
Qi
,
H. J.
,
Hunter
,
K.
,
Lanning
,
C.
,
Albietz
,
J.
,
Hofmeister
,
S.
,
Mecham
,
R.
,
Stenmark
,
K. R.
, and
Shandas
,
R.
,
2008
, “
Changes in the Structure-Function Relationship of Elastin and Its Impact on the Proximal Pulmonary Arterial Mechanics of Hypertensive Calves
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
(
4
), pp.
H1451
H1459
.10.1152/ajpheart.00127.2008
15.
Wang
,
Y.
,
Gharahi
,
H.
,
Grobbel
,
M. R.
,
Rao
,
A.
,
Roccabianca
,
S.
, and
Baek
,
S.
,
2021
, “
Potential Damage in Pulmonary Artery Hypertension: An Experimental Study of Pressure-Induced Damage of Pulmonary Artery
,”
J. Biomed. Mater. Res. Part A
,
109
(
5
), pp.
579
589
.10.1002/jbm.a.37042
16.
Schreier
,
D.
,
Hacker
,
T.
,
Song
,
G.
, and
Chesler
,
N.
,
2013
, “
The Role of Collagen Synthesis in Ventricular and Vascular Adaptation to Hypoxic Pulmonary Hypertension
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
0210181
.10.1115/1.4023480
17.
Stenmark
,
K. R.
,
Davie
,
N.
,
Frid
,
M.
,
Gerasimovskaya
,
E.
, and
Das
,
M.
,
2006
, “
Role of the Adventitia in Pulmonary Vascular Remodeling
,”
Physiology
,
21
(
2
), pp.
134
145
.10.1152/physiol.00053.2005
18.
Syyed
,
R.
,
Reeves
,
J. T.
,
Welsh
,
D.
,
Raeside
,
D.
,
Johnson
,
M. K.
, and
Peacock
,
A. J.
,
2008
, “
The Relationship Between the Components of Pulmonary Artery Pressure Remains Constant Under All Conditions in Both Health and Disease
,”
Chest
,
133
(
3
), pp.
633
639
.10.1378/chest.07-1367
19.
Stenmark
,
K. R.
,
Meyrick
,
B.
,
Galie
,
N.
,
Mooi
,
W. J.
, and
McMurtry
,
I. F.
,
2009
, “
Animal Models of Pulmonary Arterial Hypertension: The Hope for Etiological Discovery and Pharmacological Cure
,”
Am. J. Physiol. Lung Cell. Mol. Physiol.
,
297
(
6
), pp.
L1013
L1032
.10.1152/ajplung.00217.2009
20.
Lee
,
E. H.
,
1969
, “
Elasto-Plastic Deformation at Finite Strain
,”
ASME J. Appl. Mech.
,
36
(
1
), pp.
1
6
.10.1115/1.3564580
21.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
22.
Rodríguez
,
J.
,
Goicolea
,
J. M.
, and
Gabaldón
,
F.
,
2007
, “
A Volumetric Model for Growth of Arterial Walls With Arbitrary Geometry and Loads
,”
J. Biomech.
,
40
(
5
), pp.
961
971
.10.1016/j.jbiomech.2006.05.002
23.
Ambrosi
,
D.
, and
Guana
,
F.
,
2007
, “
Stress-Modulated Growth
,”
Math. Mech. Solids
,
12
(
3
), pp.
319
342
.10.1177/1081286505059739
24.
Fereidoonnezhad
,
B.
,
Naghdabadi
,
R.
,
Sohrabpour
,
S.
, and
Holzapfel
,
G. A.
,
2017
, “
A Mechanobiological Model for Damage-Induced Growth in Arterial Tissue With Application to In-Stent Restenosis
,”
J. Mech. Phys. Solids
,
101
, pp.
311
327
.10.1016/j.jmps.2017.01.016
25.
Kuhl
,
E.
,
Maas
,
R.
,
Himpel
,
G.
, and
Menzel
,
A.
,
2007
, “
Computational Modeling of Arterial Wall Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
5
), pp.
321
331
.10.1007/s10237-006-0062-x
26.
Grytsan
,
A.
,
Watton
,
P. N.
, and
Holzapfel
,
G. A.
,
2015
, “
A Thick-Walled Fluid-Solid-Growth Model of Abdominal Aortic Aneurysm Evolution: Application to a Patient-Specific Geometry
,”
ASME J. Biomech. Eng.
,
137
(
3
), p.
031008
.10.1115/1.4029279
27.
Kerckhoffs
,
R. C. P.
,
2012
, “
Computational Modeling of Cardiac Growth in the Post-Natal Rat With a Strain-Based Growth Law
,”
J. Biomech.
,
45
(
5
), pp.
865
871
.10.1016/j.jbiomech.2011.11.028
28.
Lee
,
L. C.
,
Kassab
,
G. S.
, and
Guccione
,
J. M.
,
2016
, “
Mathematical Modeling of Cardiac Growth and Remodeling
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
,
8
(
3
), pp.
211
226
.10.1002/wsbm.1330
29.
Lee
,
E. H.
,
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2018
, “
Kinematic Hardening Model Considering Directional Hardening Response
,”
Int. J. Plast.
,
110
, pp.
145
165
.10.1016/j.ijplas.2018.06.013
30.
Lee
,
E. H.
,
Choi
,
H.
,
Stoughton
,
T. B.
, and
Yoon
,
J. W.
,
2019
, “
Combined Anisotropic and Distortion Hardening to Describe Directional Response With Bauschinger Effect
,”
Int. J. Plast.
,
122
, pp.
73
88
.10.1016/j.ijplas.2019.07.007
31.
Lee
,
E. H.
,
2021
, “
An Anisotropic Stress-Driven Growth Model for Soft Tissue Based on Eulerian Deformation Tensor and Growth Potential
,”
Acta Mech.
,
232
(
3
), pp.
933
948
.10.1007/s00707-020-02885-3
32.
Holzapfel
,
G. A.
,
Gasser
,
T. G.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
33.
Helfenstein
,
J.
,
Jabareen
,
M.
,
Mazza
,
E.
, and
Govindjee
,
S.
,
2010
, “
On Non-Physical Response in Models for Fiber-Reinforced Hyperelastic Materials
,”
Int. J. Solids Struct.
,
47
(
16
), pp.
2056
2061
.10.1016/j.ijsolstr.2010.04.005
34.
Lee
,
E. H.
, and
Rubin
,
M. B.
,
2020
, “
Modeling Anisotropic Inelastic Effects in Sheet Metal Forming Using Microstructural Vectors—Part I: Theory
,”
Int. J. Plast.
,
134
, p.
102783
.10.1016/j.ijplas.2020.102783
35.
Dafalias
,
Y. F.
,
2000
, “
Orientational Evolution of Plastic Orthotropy in Sheet Metals
,”
J. Mech. Phys. Solids
,
48
(
11
), pp.
2231
2255
.10.1016/S0022-5096(00)00014-4
36.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
,
Humphrey
,
J. D.
,
Kemkemer
,
R.
,
Kuhl
,
E.
,
Olberding
,
J. E.
,
Taber
,
L. A.
, and
Garikipati
,
K.
,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
37.
Klisch
,
S. M.
,
Van Dyke
,
T. J.
, and
Hoger
,
A.
,
2001
, “
A Theory of Volumetric Growth for Compressible Elastic Biological Materials
,”
Math. Mech. Solids
,
6
(
6
), pp.
551
575
.10.1177/108128650100600601
38.
Braeu
,
F. A.
,
Aydin
,
R. C.
, and
Cyron
,
C. J.
,
2019
, “
Anisotropic Stiffness and Tensional Homeostasis Induce a Natural Anisotropy of Volumetric Growth and Remodeling in Soft Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
18
(
2
), pp.
327
345
.10.1007/s10237-018-1084-x
39.
Eriksson
,
T. S. E.
,
Watton
,
P. N.
,
Luo
,
X. Y.
, and
Ventikos
,
Y.
,
2014
, “
Modelling Volumetric Growth in a Thick Walled Fibre Reinforced Artery
,”
J. Mech. Phys. Solids
,
73
, pp.
134
150
.10.1016/j.jmps.2014.09.003
40.
Braeu
,
F. A.
,
Seitz
,
A.
,
Aydin
,
R. C.
, and
Cyron
,
C. J.
,
2017
, “
Homogenized Constrained Mixture Models for Anisotropic Volumetric Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
889
906
.10.1007/s10237-016-0859-1
41.
Rubin
,
M. B.
,
Safadi
,
M. M.
, and
Jabareen
,
M.
,
2015
, “
A Unified Theoretical Structure for Modeling Interstitial Growth and Muscle Activation in Soft Tissues
,”
Int. J. Eng. Sci.
,
90
, pp.
1
26
.10.1016/j.ijengsci.2014.12.005
42.
Hoeper
,
M. M.
, and
Humbert
,
M.
,
2019
, “
The New Haemodynamic Definition of Pulmonary Hypertension: Evidence Prevails, Finally!
,”
Eur. Respir. J.
,
53
(
3
), p.
1900038
.10.1183/13993003.00038-2019
43.
Strange
,
G.
,
Playford
,
D.
,
Stewart
,
S.
,
Deague
,
J. A.
,
Nelson
,
H.
,
Kent
,
A.
, and
Gabbay
,
E.
,
2012
, “
Pulmonary Hypertension: Prevalence and Mortality in the Armadale Echocardiography Cohort
,”
Heart
,
98
(
24
), pp.
1805
1811
.10.1136/heartjnl-2012-301992
44.
McLaughlin
,
V. V.
,
Shillington
,
A.
, and
Rich
,
S.
,
2002
, “
Survival in Primary Pulmonary Hypertension: The Impact of Epoprostenol Therapy
,”
Circulation
,
106
(
12
), pp.
1477
1482
.10.1161/01.CIR.0000029100.82385.58
45.
Zambrano
,
B. A.
,
McLean
,
N. A.
,
Zhao
,
X.
,
Tan
,
J.-L.
,
Zhong
,
L.
,
Figueroa
,
C. A.
,
Lee
,
L. C.
, and
Baek
,
S.
,
2018
, “
Image-Based Computational Assessment of Vascular Wall Mechanics and Hemodynamics in Pulmonary Arterial Hypertension Patients
,”
J. Biomech.
,
68
, pp.
84
92
.10.1016/j.jbiomech.2017.12.022
46.
Edwards
,
P. D.
,
Bull
,
R. K.
, and
Coulden
,
R.
,
1998
, “
CT Measurement of Main Pulmonary Artery Diameter
,”
Brit. J. Radiol.
,
71
(
850
), pp.
1018
1020
.10.1259/bjr.71.850.10211060
47.
Chazova
,
I.
,
Loyd
,
J. E.
,
Zhdanov
,
V. S.
,
Newman
,
J. H.
,
Belenkov
,
Y.
, and
Meyrick
,
B.
,
1995
, “
Pulmonary Artery. Adventitial Changes and Venous Involvement in Primary Pulmonary Hypertension
,”
Am. J. Pathol.
,
146
(
2
), pp.
389
397
.https://pubmed.ncbi.nlm.nih.gov/7856750/
48.
Lee
,
E. H.
,
2020
, “
A Study on the Efect of Young's Modulus Modeling on the Energy Conservation in Elastic–Plastic Material Computation
,”
Int. J. Prec. Eng. Manuf.
,
21
(
10
), pp.
1875
1884
.10.1007/s12541-020-00384-y
49.
Nickel
,
N. P.
,
Spiekerkoetter
,
E.
,
Gu
,
M.
,
Li
,
C. G.
,
Li
,
H.
,
Kaschwich
,
M.
,
Diebold
,
I.
,
Hennigs
,
J. K.
,
Kim
,
K.-Y.
,
Miyagawa
,
K.
,
Wang
,
L.
,
Cao
,
A.
,
Sa
,
S.
,
Jiang
,
X.
,
Stockstill
,
R. W.
,
Nicolls
,
M. R.
,
Zamanian
,
R. T.
,
Bland
,
R. D.
, and
Rabinovitch
,
M.
,
2015
, “
Elafin Reverses Pulmonary Hypertension Via Caveolin-1-Dependent Bone Morphogenetic Protein Signaling
,”
Am. J. Respir. Crit. Care Med.
,
191
(
11
), pp.
1273
1286
.10.1164/rccm.201412-2291OC
50.
Cheng
,
Y.
,
Gong
,
Y.
,
Qian
,
S.
,
Mou
,
Y.
,
Li
,
H.
,
Chen
,
X.
,
Kong
,
H.
,
Xie
,
W.
,
Wang
,
H.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2018
, “
Identification of a Novel Hybridization From Isosorbide 5-Mononitrate and Bardoxolone Methyl With Dual Activities of Pulmonary Vasodilation and Vascular Remodeling Inhibition on Pulmonary Arterial Hypertension Rats
,”
J. Med. Chem.
,
61
(
4
), pp.
1474
1482
.10.1021/acs.jmedchem.7b01153
51.
Khirfan
,
G.
,
Tonelli
,
A. R.
,
Ramsey
,
J.
, and
Sahay
,
S.
,
2018
, “
Palliative Care in Pulmonary Arterial Hypertension: An Underutilised Treatment
,”
Eur. Respir. Rev.
,
27
(
150
), p.
180069
.10.1183/16000617.0069-2018
52.
Hunter
,
K. S.
,
Feinstein
,
J. A.
,
Ivy
,
D. D.
, and
Shandas
,
R.
,
2010
, “
Computational Simulation of the Pulmonary Arteries and Its Role in the Study of Pediatric Pulmonary Hypertension
,”
Prog. Pediatr. Cardiol. Elsevier B.V.
,
30
(
1–2
), pp.
63
69
.10.1016/j.ppedcard.2010.09.008
53.
Qureshi
,
M. U.
,
Vaughan
,
G. D. A.
,
Sainsbury
,
C.
,
Johnson
,
M.
,
Peskin
,
C. S.
,
Olufsen
,
M. S.
, and
Hill
,
N. A.
,
2014
, “
Numerical Simulation of Blood Flow and Pressure Drop in the Pulmonary Arterial and Venous Circulation
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1137
1154
.10.1007/s10237-014-0563-y
54.
Filonova
,
V.
,
Gharahi
,
H.
,
Nama
,
N.
,
Baek
,
S.
,
Alberto Figueroa
,
C.
, and
Figueroa
,
C. A.
,
2020
, “
A Multiscale Framework for Defining Homeostasis in Distal Vascular Trees: Applications to the Pulmonary Circulation
,” Arxiv.org, pp.
1
35
.https://www.researchgate.net/publication/338594118_A_Multiscale_Framework_for_Defining_Homeostasis_in_Distal_Vascular_Trees_Applications_to_the_Pulmonary_Circulation
55.
Rausch
,
M. K.
,
Dam
,
A.
,
Göktepe
,
S.
,
Abilez
,
O. J.
, and
Kuhl
,
E.
,
2011
, “
Computational Modeling of Growth: Systemic and Pulmonary Hypertension in the Heart
,”
Biomech. Model. Mechanobiol.
,
10
(
6
), pp.
799
811
.10.1007/s10237-010-0275-x
56.
Shavik
,
S. M.
,
Tossas-Betancourt
,
C.
,
Figueroa
,
C. A.
,
Baek
,
S.
, and
Lee
,
L. C.
,
2020
, “
Multiscale Modeling Framework of Ventricular-Arterial Bi-Directional Interactions in the Cardiopulmonary Circulation
,”
Front. Physiol.
,
11
, p. 2.10.3389/fphys.2020.00002
57.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid-Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.10.1016/j.cma.2006.06.018
58.
Michael
,
E.
, and
Yeager
,
K. L. C.
,
2014
, “
Animal Models of Pulmonary Hypertension: Matching Disease Mechanisms to Etiology of the Human Disease
,”
J. Pulm. Respir. Med.
,
4
(
4
), p.
198
.10.4172/2161-105X.1000198
59.
Mitchell
,
G. F.
,
Hwang
,
S. J.
,
Vasan
,
R. S.
,
Larson
,
M. G.
,
Pencina
,
M. J.
,
Hamburg
,
N. M.
,
Vita
,
J. A.
,
Levy
,
D.
, and
Benjamin
,
E. J.
,
2010
, “
Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study
,”
Circulation
,
121
(
4
), pp.
505
511
.10.1161/CIRCULATIONAHA.109.886655
60.
Sun
,
W.
, and
Chan
,
S. Y.
,
2018
, “
Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension
,”
Front. Med.
,
5
, p.
204
.10.3389/fmed.2018.00204
61.
Sáez
,
P.
,
García
,
A.
,
Peña
,
E.
,
Gasser
,
T. C.
, and
Martínez
,
M. A.
,
2016
, “
Microstructural Quantification of Collagen Fiber Orientations and Its Integration in Constitutive Modeling of the Porcine Carotid Artery
,”
Acta Biomater.
,
33
, pp.
183
193
.10.1016/j.actbio.2016.01.030
62.
Brasselet
,
C.
,
Durand
,
E.
,
Addad
,
F.
,
Al Haj Zen
,
A.
,
Smeets
,
M. B.
,
Laurent-Maquin
,
D.
,
Bouthors
,
S.
,
Bellon
,
G.
,
De Kleijn
,
D.
,
Godeau
,
G.
,
Garnotel
,
R.
,
Gogly
,
B.
, and
Lafont
,
A.
,
2005
, “
Collagen and Elastin Cross-Linking: A Mechanism of Constrictive Remodeling After Arterial Injury
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
5
), pp.
H2228
H2233
.10.1152/ajpheart.00410.2005
63.
Wang
,
R.
,
Raykin
,
J.
,
Li
,
H.
,
Gleason
,
R. L.
, and
Brewster
,
L. P.
,
2014
, “
Differential Mechanical Response and Microstructural Organization Between Non-Human Primate Femoral and Carotid Arteries
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1041
1051
.10.1007/s10237-014-0553-0
64.
Small
,
D. M.
,
Zani
,
M.-L.
,
Quinn
,
D. J.
,
Dallet-Choisy
,
S.
,
Glasgow
,
A. M. A.
,
O'Kane
,
C.
,
McAuley
,
D. F.
,
McNally
,
P.
,
Weldon
,
S.
,
Moreau
,
T.
, and
Taggart
,
C. C.
,
2015
, “
A Functional Variant of Elafin With Improved Anti-Inflammatory Activity for Pulmonary Inflammation
,”
Mol. Ther.
,
23
(
1
), pp.
24
31
.10.1038/mt.2014.162
You do not currently have access to this content.