Abstract

Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.

References

1.
Horrocks
,
C. L.
,
2001
, “
Blast Injuries: Biophysics, Pathophysiology and Management Principles
,”
J. R. Army Med. Corps
,
147
(
1
), pp.
28
40
.10.1136/jramc-147-01-03
2.
Warden
,
D.
,
2006
, “
Military TBI During the Iraq and Afghanistan Wars
,”
J. Head Trauma Rehabil.
,
21
(
5
), pp.
398
402
.10.1097/00001199-200609000-00004
3.
Owens
,
B. D.
,
Kragh
,
J. F.
,
Wenke
,
J. C.
,
Macaitis
,
J.
,
Wade
,
C. E.
, and
Holcomb
,
J. B.
,
2008
, “
Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Trauma Inj. Infect. Crit. Care
,
64
(
2
), pp.
295
299
.10.1097/TA.0b013e318163b875
4.
Health.mil,
2021
, “
2000-2020 Q3 DoD Worldwide Numbers for Traumatic Brain Injury
,”
Traumatic Brain Injury Center of Excellence (TBICoE)
, Health.mil, Falls Church, VA, accessed May 19, 2021, https://health.mil/About-MHS/OASDHA/Defense-Health-Agency/Research-and-Development/Traumatic-Brain-Injury-Center-of-Excellence/DoD-TBI-Worldwide-Numbers.
5.
Champion
,
H. R.
,
Holcomb
,
J. B.
, and
Young
,
L. A.
,
2009
, “
Injuries From Explosions: Physics, Biophysics, Pathology, and Required Research Focus
,”
J. Trauma Inj. Infect. Crit. Care
,
66
(
5
), pp.
1468
1477
.10.1097/TA.0b013e3181a27e7f
6.
Wood
,
G. W.
,
Panzer
,
M. B.
,
Shridharani
,
J. K.
,
Matthews
,
K. A.
,
Capehart
,
B. P.
,
Myers
,
B. S.
, and
Bass
,
C. R.
,
2013
, “
Attenuation of Blast Pressure Behind Ballistic Protective Vests
,”
Inj. Prev.
,
19
(
1
), pp.
19
25
.10.1136/injuryprev-2011-040277
7.
Ouellet
,
S.
, and
Petel
,
O. E.
,
2017
, “
On the Prospective Contributions of the Shock Physics Community to Outstanding Issues Concerning Blast-Induced Traumatic Brain Injury
,”
Shock Waves
,
27
(
6
), pp.
821
827
.10.1007/s00193-017-0773-1
8.
Nakagawa
,
A.
,
Ohtani
,
K.
,
Armonda
,
R.
,
Tomita
,
H.
,
Sakuma
,
A.
,
Mugikura
,
S.
,
Takayama
,
K.
,
Kushimoto
,
S.
, and
Tominaga
,
T.
,
2017
, “
Primary Blast-Induced Traumatic Brain Injury: Lessons From Lithotripsy
,”
Shock Waves
,
27
(
6
), pp.
863
878
.10.1007/s00193-017-0753-5
9.
Nakagawa
,
A.
,
Manley
,
G. T.
,
Gean
,
A. D.
,
Ohtani
,
K.
,
Armonda
,
R.
,
Tsukamoto
,
A.
,
Yamamoto
,
H.
,
Takayama
,
K.
, and
Tominaga
,
T.
,
2011
, “
Mechanisms of Primary Blast-Induced Traumatic Brain Injury: Insights From Shock-Wave Research
,”
J. Neurotrauma
,
28
(
6
), pp.
1101
1119
.10.1089/neu.2010.1442
10.
Courtney
,
A.
, and
Courtney
,
M.
,
2015
, “
The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms
,”
Front. Neurol.
,
6
(
221
), pp.
1
12
.10.3389/fneur.2015.00221
11.
Fievisohn
,
E.
,
Bailey
,
Z.
,
Guettler
,
A.
, and
Vandevord
,
P.
,
2018
, “
Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
020806
.10.1115/1.4038710
12.
Hicks
,
R. R.
,
Fertig
,
S. J.
,
Desrocher
,
R. E.
,
Koroshetz
,
W. J.
, and
Pancrazio
,
J. J.
,
2010
, “
Neurological Effects of Blast Injury
,”
J. Nerv. Ment. Dis.
,
68
(
5
), pp.
1257
1263
.10.1097/TA.0b013e3181d8956d
13.
Cernak
,
I.
, and
Noble-Haeusslein
,
L. J.
,
2010
, “
Traumatic Brain Injury: An Overview of Pathobiology With Emphasis on Military Populations
,”
J. Cereb. Blood Flow Metab.
,
30
(
2
), pp.
255
266
.10.1038/jcbfm.2009.203
14.
Bennett
,
S.
,
Fintelman
,
G.
,
Patchell
,
M. P.
,
Webb
,
A.
,
Wynen
,
B.
,
Costello
,
J.
, and
Wallace
,
D.
,
2015
, “
Project Cerebro: An Evaluation of Blast Gauges in the Australian Defence Force
,”
J. Mil. Veterans. Health
,
23
(
3
), pp.
27
30
.https://jmvh.org/article/project-cerebro-an-evaluation-of-blast-gauges-in-the-australian-defence-force/
15.
Misistia
,
A.
,
Skotak
,
M.
,
Cardenas
,
A.
,
Alay
,
E.
,
Chandra
,
N.
, and
Kamimori
,
G. H.
,
2020
, “
Sensor Orientation and Other Factors Which Increase the Blast Overpressure Reporting Errors
,”
PLoS One
,
15
(
10
), p.
e0240262
.10.1371/journal.pone.0240262
16.
Dionne
,
J. P.
,
Levine
,
J.
, and
Makris
,
A.
,
2019
, “
Investigating Bomb Suit Blast Overpressure Test Methodologies
,” P. Mattson and J. Marshall, eds., Homeland Security and Public Safety: Research, Applications and Standards,
ASTM International, West Conshohocken
, PA, pp.
216
236
.10.1520/STP161420180045
17.
Skotak
,
M.
,
Salib
,
J.
,
Misistia
,
A.
,
Cardenas
,
A.
,
Alay
,
E.
,
Chandra
,
N.
, and
Kamimori
,
G. H.
,
2020
, “
Factors Contributing to Increased Blast Overpressure Inside Modern Ballistic Helmets
,”
Appl. Sci.
,
10
(
20
), pp.
1
15
. 10.3390/app10207193
18.
‘T Eynde
,
J. O.
,
Yu
,
A. W.
,
Eckersley
,
C. P.
, and
Bass
,
C. R.
,
2020
, “
Primary Blast Wave Protection in Combat Helmet Design: A Historical Comparison Between Present Day and World War I
,”
PLoS One
,
15
(
2
), p.
e0228802
.10.1371/journal.pone.0228802
19.
Sochet
,
I.
,
2017
,
Blast Effects: Physical Properties of Shock Waves
,
Springer International Publishing
, Berlin.
20.
Kinney
,
G. F.
, and
Graham
,
K. J.
,
2013
,
Explosive Shocks in Air
,
Springer-Verlag, Berlin, Heidelberg.
21.
Friedlander
,
F. G.
,
1946
, “
The Diffraction of Sound Pulses; Diffraction by a Semi-Infinite Plane
,”
Proc. R. Soc. London A. Math. Phys. Sci.
,
186
(
1006
), pp.
322
344
.10.1098/rspa.1946.0046
22.
Ullah
,
A.
,
Ahmad
,
F.
,
Jang
,
H. W.
,
Kim
,
S. W.
, and
Hong
,
J. W.
,
2017
, “
Review of Analytical and Empirical Estimations for Incident Blast Pressure
,”
KSCE J. Civ. Eng.
,
21
(
6
), pp.
2211
2225
.10.1007/s12205-016-1386-4
23.
Rigby
,
S. E.
,
Tyas
,
A.
,
Fay
,
S. D.
,
Clarke
,
S. D.
, and
Warren
,
J. A.
,
2014
, “
Validation of Semi-Empirical Blast Pressure Predictions for Far Field Explosions—Is There Inherent Variability in Blast Wave Parameters?
,”
Proceedings of the Sixth International Conference on Protection of Structures Against Hazards
, Tianjin, China, Oct. 16–17.https://eprints.whiterose.ac.uk/81237/
24.
Needham
,
C. E.
,
2010
,
Blast Waves
,
Springer
,
New York
.
25.
Zhu
,
F.
,
Mao
,
H.
,
Leonardi
,
A. D. C.
,
Wagner
,
C.
,
Chou
,
C.
,
Jin
,
X.
,
Bir
,
C.
,
Vandevord
,
P.
,
Yang
,
K. H.
, and
King
,
A.
,
2010
, “
Development of an FE Model of the Rat Head Subjected to Air Shock Loading
,”
Stapp Car Crash J.
,
54
, pp.
211
225
.10.4271/2010-22-0011
26.
Panzer
,
M. B.
,
Myers
,
B. S.
,
Capehart
,
B. P.
, and
Bass
,
C. R.
,
2012
, “
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1530
1544
.10.1007/s10439-012-0519-2
27.
Rutter
,
B.
, and
Johnson
,
C. E.
,
2019
, “
Pressure Versus Impulse Graph for Blast-Induced Traumatic Brain Injury and Correlation to Observable Blast Injuries
,”
Ph.D. dissertation
,
Missouri University of Science and Technology, Rolla, MO
.https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=3796&context=doctoral_dissertations
28.
Teich
,
M.
, and
Gebbeken
,
N.
,
2010
, “
The Influence of the Underpressure Phase on the Dynamic Response of Structures Subjected to Blast Loads
,”
Int. J. Prot. Struct
,.,
1
(
2
), pp.
219
234
.10.1260/2041-4196.1.2.219
29.
Larcher
,
M.
,
2008
, “
Pressure-Time Functions for the Description of Air Blast Waves
,” JRC, Ispra, Italy, Report No.
46829
.https://www.researchgate.net/publication/264511656_Pressure-Time_Functions_for_the_Description_of_Air_Blast_Waves
30.
Sutar
,
S.
, and
Ganpule
,
S.
,
2020
, “
Investigation of Wave Propagation Through Head Layers With Focus on Understanding Blast Wave Transmission
,”
Biomech. Model. Mechanobiol.
,
19
(
3
), pp.
875
892
.10.1007/s10237-019-01256-9
31.
Rigby
,
S. E.
,
Tyas
,
A.
,
Clarke
,
S. D.
,
Fay
,
S. D.
,
Warren
,
J. A.
,
Elgy
,
I.
, and
Gant
,
M.
,
2014
, “
Testing Apparatus for the Spatial and Temporal Pressure Measurements From Near-Field Free Air Explosions Blast Wave With the Target
,”
Proceedings of the Sixth International Conference on Protection of Structures Against Hazards
, Tianjin, China, Oct. 16–17.https://eprints.whiterose.ac.uk/81238/.
32.
Nyein
,
M. K.
,
Jason
,
A. M.
,
Yu
,
L.
,
Pita
,
C. M.
,
Joannopoulos
,
J. D.
,
Moore
,
D. F.
, and
Radovitzky
,
R. A.
,
2010
, “
In Silico Investigation of Intracranial Blast Mitigation With Relevance to Military Traumatic Brain Injury
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
48
), pp.
20703
20708
.10.1073/pnas.1014786107
33.
Sarvghad-Moghaddam
,
H.
,
Jazi
,
M. S.
,
Rezaei
,
A.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2015
, “
Examination of the Protective Roles of Helmet/Faceshield and Directionality for Human Head Under Blast Waves
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
16
), pp.
1846
1855
.10.1080/10255842.2014.977878
34.
Sarvghad-Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2016
, “
Evaluation of Brain Tissue Responses Because of the Underwash Overpressure of Helmet and Faceshield Under Blast Loading
,”
Int. J. Numer. Method. Biomed. Eng.
,
33
(
1
), pp.
1
13
.10.1002/cnm.2782
35.
Rodríguez-Millán
,
M.
,
Tan
,
L. B.
,
Tse
,
K. M.
,
Lee
,
H. P.
, and
Miguélez
,
M. H.
,
2017
, “
Effect of Full Helmet Systems on Human Head Responses Under Blast Loading
,”
Mater. Des.
,
117
, pp.
58
71
.10.1016/j.matdes.2016.12.081
36.
Valverde-Marcos
,
B.
,
Rubio
,
I.
,
Antona-Makoshi
,
J.
,
Chawla
,
A.
,
Loya
,
J. A.
, and
Rodríguez-Millán
,
M.
,
2020
, “
Numerical Analysis of EOD Helmet Under Blast Load Events Using Human Head Model
,”
Appl. Sci.
,
10
(
22
), pp.
1
24
.10.3390/app10228227
37.
Hosseini-Farid
,
M.
,
Amiri-Tehrani-Zadeh
,
M.
,
Ramzanpour
,
M.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2020
, “
The Strain Rates in the Brain, Brainstem, Dura, and Skull Under Dynamic Loadings
,”
Math. Comput. Appl.
,
25
(
2
), pp.
21
15
.10.3390/mca25020021
38.
Singh
,
D.
, and
Cronin
,
D. S.
,
2019
, “
Multi-Scale Modeling of Head Kinematics and Brain Tissue Response to Blast Exposure
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1993
2004
.10.1007/s10439-018-02193-x
39.
Li
,
J.
,
Ma
,
T.
,
Huang
,
C.
,
Huang
,
X.
,
Kang
,
Y.
,
Long
,
Z.
, and
Liu
,
M.
,
2020
, “
Protective Mechanism of Helmet Under Far-Field Shock Wave
,”
Int. J. Impact Eng.
,
143
, pp.
1
12
.10.1016/j.ijimpeng.2020.103617
40.
Azar
,
A.
,
Bhagavathula
,
K. B.
,
Hogan
,
J.
,
Ouellet
,
S.
,
Satapathy
,
S.
, and
Dennison
,
C. R.
,
2020
, “
Protective Headgear Attenuates Forces on the Inner Table and Pressure in the Brain Parenchyma During Blast and Impact: An Experimental Study Using a Simulant-Based Surrogate Model of the Human Head
,”
ASME J. Biomech. Eng.
,
142
(
4
), p.
041009
. 10.1115/1.4044926
41.
Lockhart
,
P. A.
,
Cronin
,
D. S.
,
Williams
,
K.
, and
Ouellet
,
S.
,
2011
, “
Investigation of Head Response to Blast Loading
,”
J. Trauma
,
70
(
2
), pp.
E29
E36
.10.1097/TA.0b013e3181de3f4b
42.
Bauman
,
R. A.
,
Ling
,
G.
,
Tong
,
L.
,
Januszkiewicz
,
A.
,
Agoston
,
D.
,
Delanerolle
,
N.
,
Kim
,
Y.
,
Ritzel
,
D.
,
Bell
,
R.
,
Ecklund
,
J.
,
Armonda
,
R.
,
Bandak
,
F.
, and
Parks
,
S.
,
2009
, “
An Introductory Characterization of a Combat-Casualty-Care Relevant Swine Model of Closed Head Injury Resulting From Exposure to Explosive Blast
,”
J. Neurotrauma
,
26
(
6
), pp.
841
860
.10.1089/neu.2008.0898
43.
Leonardi
,
A. D. C.
,
Keane
,
N. J.
,
Hay
,
K.
,
Ryan
,
A. G.
,
Bir
,
C.
, and
Vandevord
,
P.
,
2013
, “
Methodology and Evaluation of Intracranial Pressure Response in Rats Exposed to Complex Shock Waves
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2488
2500
.10.1007/s10439-013-0850-2
44.
Rezaei
,
A. M.
,
Salimi
,
J.
, and
Karami
,
G.
,
2014
, “
Computational Modeling of Human Head Under Blast in Confined and Open Spaces: Primary Blast Injury
,”
Int. J. Numer. Method. Biomed. Eng.
,
30
, pp.
62
82
.10.1002/cnm.2590
45.
Tan
,
L. B.
,
Chew
,
F. S.
,
Tse
,
K. M.
,
Tan
,
V. B. C.
, and
Lee
,
H. P.
,
2014
, “
Impact of Complex Blast Waves on the Human Head: A Computational Study
,”
Int. J. Numer. Method. Biomed. Eng.
,
30
(
12
), pp.
1476
1505
.10.1002/cnm.2668
46.
Skotak
,
M.
,
LaValle
,
C.
,
Misistia
,
A.
,
Egnoto
,
M. J.
,
Chandra
,
N.
, and
Kamimori
,
G.
,
2019
, “
Occupational Blast Wave Exposure During Multiday 0.50 Caliber Rifle Course
,”
Front. Neurol.
,
10
, pp.
1
10
.10.3389/fneur.2019.00797
47.
Kamimori
,
G. H.
,
Reilly
,
L. A.
,
LaValle
,
C. R.
, and
Olaghere Da Silva
,
U. B.
,
2017
, “
Occupational Overpressure Exposure of Breachers and Military Personnel
,”
Shock Waves
,
27
(
6
), pp.
837
847
.10.1007/s00193-017-0738-4
48.
Carr
,
W.
,
Dell
,
K. C.
,
Yanagi
,
M. A.
,
Hassan
,
D. M.
, and
LoPresti
,
M. L.
,
2017
, “
Perspectives on Repeated Low-Level Blast and the Measurement of Neurotrauma in Humans as an Occupational Exposure Risk
,”
Shock Waves
,
27
(
6
), pp.
829
836
.10.1007/s00193-017-0766-0
49.
Wiri
,
S.
,
Ritter
,
A. C.
,
Bailie
,
J. M.
,
Needham
,
C.
, and
Duckworth
,
J. L.
,
2017
, “
Computational Modeling of Blast Exposure Associated With Recoilless Weapons Combat Training
,”
Shock Waves
,
27
(
6
), pp.
849
862
.10.1007/s00193-017-0755-3
50.
Kingery
,
C. N.
, and
Bulmash
,
G.
,
1984
,
Airblast Parameters From TNT Spherical Air Burst and Hemispherical Surface Burst
,
U.S. Army Armament and Development Center, Ballistic Research Laboratory
, MD.
51.
Rafaels
,
K. A.
,
Bass
,
C. R.
,
Panzer
,
M. B.
,
Salzar
,
R. S.
,
Woods
,
W. A.
,
Feldman
,
S. H.
,
Walilko
,
T.
,
Kent
,
R. W.
,
Capehart
,
B. P.
,
Foster
,
J. B.
,
Derkunt
,
B.
, and
Toman
,
A.
,
2012
, “
Brain Injury Risk From Primary Blast
,”
J. Trauma Acute Care Surg.
,
73
(
4
), pp.
895
901
.10.1097/TA.0b013e31825a760e
52.
Courtney
,
M. W.
, and
Courtney
,
A. C.
,
2010
, “
Note: A Table-Top Blast Driven Shock Tube
,”
Rev. Sci. Instrum.
,
81
(
12
), pp.
11
14
.10.1063/1.3518970
53.
Alley
,
M. D.
,
Schimizze
,
B. R.
, and
Son
,
S. F.
,
2011
, “
Experimental Modeling of Explosive Blast-Related Traumatic Brain Injuries
,”
Neuroimage
,
54
, pp.
S45
S54
.10.1016/j.neuroimage.2010.05.030
54.
Long
,
J. B.
,
Bentley
,
T. L.
,
Wessner
,
K. A.
,
Cerone
,
C.
,
Sweeney
,
S.
, and
Bauman
,
R. A.
,
2009
, “
Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory
,”
J. Neurotrauma
,
26
(
6
), pp.
827
840
.10.1089/neu.2008.0748
55.
Courtney
,
A. C.
,
Andrusiv
,
L. P.
, and
Courtney
,
M. W.
,
2012
, “
Oxy-Acetylene Driven Laboratory Scale Shock Tubes for Studying Blast Wave Effects
,”
Rev. Sci. Instrum.
,
83
(
4
), pp.
1
7
.10.1063/1.3702803
56.
Kahali
,
S.
,
Townsend
,
M.
,
Nguyen
,
M. M.
,
Kim
,
J.
,
Alay
,
E.
,
Skotak
,
M.
, and
Chandra
,
N.
,
2020
, “
The Evolution of Secondary Flow Phenomena and Their Effect on Primary Shock Conditions in Shock Tubes: Experimentation and Numerical Model
,”
PLoS One
,
15
(
1
), p.
e0227125
.10.1371/journal.pone.0227125
57.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2013
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
511
531
.10.1007/s10237-012-0421-8
58.
Salzar
,
R. S.
,
Treichler
,
D.
,
Wardlaw
,
A.
,
Weiss
,
G.
, and
Goeller
,
J.
,
2017
, “
Experimental Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury in Post-Mortem Human Subject Heads
,”
J. Neurotrauma
,
34
(
8
), pp.
1589
1602
.10.1089/neu.2016.4600
59.
Kochavi
,
E.
,
Gruntman
,
S.
,
Ben-Dor
,
G.
,
Sherf
,
I.
,
Meirovich
,
E.
,
Amir
,
B.
,
Shushan
,
G.
, and
Sadot
,
O. M.
,
2020
, “
Design and Construction of an In-Laboratory Novel Blast Wave Simulator
,”
Exp. Mech.
,
60
(
8
), pp.
1149
1159
.10.1007/s11340-020-00650-0
60.
Iwaskiw
,
A. S.
,
Ott
,
K. A.
,
Armiger
,
R. S.
,
Wickwire
,
A. C.
,
Alphonse
,
V. D.
,
Voo
,
L. M.
,
Carneal
,
C. M.
, and
Merkle
,
A. C.
,
2018
, “
The Measurement of Intracranial Pressure and Brain Displacement Due to Short-Duration Dynamic Overpressure Loading
,”
Shock Waves
,
28
(
1
), pp.
63
83
.10.1007/s00193-017-0759-z
61.
Sutar
,
S.
, and
Ganpule
,
S.
,
2020
, “
Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for TBI Studies
,”
J. Neurotrauma,
pp.
1
37
.10.1089/neu.2020.7394
62.
Sawyer
,
T. W.
,
Wang
,
Y.
,
Ritzel
,
D. V.
,
Josey
,
T.
,
Villanueva
,
M.
,
Shei
,
Y.
,
Nelson
,
P.
,
Hennes
,
G.
,
Weiss
,
T.
,
Vair
,
C.
,
Fan
,
C.
, and
Barnes
,
J.
,
2016
, “
High-Fidelity Simulation of Primary Blast: Direct Effects on the Head
,”
J. Neurotrauma
,
33
(
13
), pp.
1181
1193
.10.1089/neu.2015.3914
63.
Gan
,
E. C. J.
,
Remennikov
,
A.
,
Ritzel
,
D.
, and
Uy
,
B.
,
2020
, “
Approximating a Far-Field Blast Environment in an Advanced Blast Simulator for Explosion Resistance Testing
,”
Int. J. Prot. Struct.
,
11
(
4
), pp.
468
493
.10.1177/2041419620911133
64.
Sundaramurthy
,
A.
, and
Chandra
,
N.
,
2014
, “
A Parametric Approach to Shape Field Relevant Blast Wave Profiles in Compressed Gas-Driven Shock Tube
,”
Front. Neurol.
,
5
(
253
), pp.
1
10
.10.3389/fneur.2014.00253
65.
Nguyen
,
T. T. N.
,
Wilgeroth
,
J. M.
, and
Proud
,
W. G.
,
2014
, “
Controlling Blast Wave Generation in a Shock Tube for Biological Applications
,”
J. Phys. Conf. Ser.
,
500
(
14
), pp.
1
6
.10.1088/1742-6596/500/14/142025
66.
Tasissa
,
A. F.
,
Hautefeuille
,
M.
,
Fitek
,
J. H.
, and
Radovitzky
,
R. A.
,
2016
, “
On the Formation of Friedlander Waves in a Compressed-Gas-Driven Shock Tube
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
472
(
2186
), pp.
1
24
.10.1098/rspa.2015.0611
67.
Swietek
,
B.
,
Skotak
,
M.
,
Chandra
,
N.
, and
Pfister
,
B. J.
,
2019
, “
Characterization of a Controlled Shock Wave Delivered by a Pneumatic Table-Top Gas Driven Shock Tube
,”
Rev. Sci. Instrum.
,
90
(
7
), pp.
1
8
.10.1063/1.5099633
68.
Kuriakose
,
M.
,
Skotak
,
M.
,
Misistia
,
A.
,
Kahali
,
S.
,
Sundaramurthy
,
A.
, and
Chandra
,
N.
,
2016
, “
Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen
,”
PLoS One
,
11
(
9
), p.
e0161597
.10.1371/journal.pone.0161597
69.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
70.
Rafaels
,
K. A.
,
Shridharani
,
J.
,
Bass
,
C. R.
,
Salzar
,
R. S.
,
Walilko
,
T. J.
, and
Panzer
,
M. B.
,
2010
, “
Blast Wave Attenuation: Ballistic Protective Helmets and the Head
,”
Personal Armour Systems Symposium (PASS)
, Quebec City, PQ, Canada, Sept. 13–17.
71.
Roberts
,
J. C.
,
Harrigan
,
T. P.
,
Ward
,
E. E.
,
Taylor
,
T. M.
,
Annett
,
M. S.
, and
Merkle
,
A. C.
,
2012
, “
Human Head-Neck Computational Model for Assessing Blast Injury
,”
J. Biomech.
,
45
(
16
), pp.
2899
2906
.10.1016/j.jbiomech.2012.07.027
72.
Chandra
,
N.
,
Ganpule
,
S.
,
Kleinschmit
,
N.
,
Feng
,
R.
,
Holmberg
,
A.
,
Sundaramurthy
,
A.
,
Selvan
,
V.
, and
Alai
,
A.
,
2012
, “
Evolution of Blast Wave Profiles in Simulated Air Blasts: Experiment and Computational Modeling
,”
Shock Waves
,
22
(
5
), pp.
403
415
.10.1007/s00193-012-0399-2
73.
Skotak
,
M.
,
Alay
,
E.
,
Zheng
,
J. Q.
,
Halls
,
V.
, and
Chandra
,
N.
,
2018
, “
Effective Testing of Personal Protective Equipment in Blast Loading Conditions in Shock Tube: Comparison of Three Different Testing Locations
,”
PLoS One
,
13
(
6
), p.
e0198968
.10.1371/journal.pone.0198968
74.
Kumar
,
R.
, and
Nedungadi
,
A.
,
2020
, “
Using Gas-Driven Shock Tubes to Produce Blast Wave Signatures
,”
Front. Neurol.
,
11
, pp.
1
9
.10.3389/fneur.2020.00090
75.
Needham
,
C. E.
,
Ritzel
,
D.
,
Rule
,
G.
,
Wiri
,
S.
, and
Young
,
L. A.
,
2015
, “
Bad Science Yields Wrong Conclusions: Blast Testing Issues and TBI
,”
Front. Neurol.
,
6
, pp.
2
11
.10.3389/fneur.2015.00072
76.
Maach
,
S.
,
von Rosen
,
B.
,
McCauley
,
L.
,
Levine
,
J.
, and
Dionne
,
J. P.
,
2017
, “
Comparison of Hybrid III Head Response to Shock Tube and Explosive Blast Loading
,”
IRCOBI Conference Proceedings
, Antwerp, Belgium, Sept. 13–15, Paper No. IRC-17-44.http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/44.pdf
77.
Obed Samuelraj
,
I.
, and
Jagadeesh
,
G.
,
2019
, “
Laboratory Simulation of Explosions Using Conical Shock Tubes
,”
31st International Symposium on Shock Waves
,
Springer International Publishing
, Nagoya, Japan, July 9–14, pp.
135
142
.10.1007/978-3-319-91020-8_14
78.
Ackerman
,
M. J.
,
1998
, “
The Visible Human Project
,”
Proc. IEEE
,
86
(
3
), pp.
504
511
.10.1109/5.662875
79.
Taylor
,
P. A.
, and
Ford
,
C. C.
,
2009
, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061007
.10.1115/1.3118765
80.
Grujicic
,
M.
,
Arakere
,
G.
, and
He
,
T.
,
2010
, “
Material-Modeling and Structural-Mechanics Aspects of the Traumatic Brain Injury Problem
,”
Multidiscip. Model. Mater. Struct.
,
6
(
3
), pp.
335
363
.10.1108/15736101011080097
81.
Akula
,
P. K.
,
Hua
,
Y.
, and
Gu
,
L.
,
2013
, “
Role of Frontal Sinus on Primary Blast-Induced Traumatic Brain Injury
,”
ASME J. Med. Devices
,
7
(
3
), p.
030925
.10.1115/1.4024492
82.
Ganpule
,
S.
,
Salzar
,
R.
,
Chandra
,
N.
, and
Perry
,
B.
,
2016
, “
Role of Helmets in Blast Mitigation: Insights From Experiments on PMHS Surrogate
,”
Int. J. Exp. Comput. Biomech.
,
4
(
1
), pp.
13
31
.10.1504/IJECB.2016.081745
83.
Moss
,
W. C.
,
King
,
M. J.
, and
Blackman
,
E. G.
,
2009
, “
Skull Flexure From Blast Waves: A Mechanism for Brain Injury With Implications for Helmet Design
,”
Phys. Rev. Lett.
,
103
(
10
), pp.
4
7
.10.1103/PhysRevLett.103.108702
84.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
Vandevord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.10.1007/s10439-011-0343-0
85.
Hua
,
Y.
,
Akula
,
P. K.
,
Gu
,
L.
,
Berg
,
J.
, and
Nelson
,
C. A.
,
2014
, “
Experimental and Numerical Investigation of the Mechanism of Blast Wave Transmission Through a Surrogate Head
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031010
.10.1115/1.4026156
86.
Goldstein
,
L. E.
,
Fisher
,
A. M.
,
Tagge
,
C. A.
,
Zhang
,
X.
,
Sullivan
,
J. A.
,
Upreti
,
C.
,
Kracht
,
J. M.
,
Ericsson
,
M.
,
Mark
,
W.
,
Goletiani
,
C. J.
,
Maglakelidze
,
G. M.
,
Casey
,
N.
,
Juliet
,
A.
,
Minaeva
,
O.
,
Moir
,
R. D.
,
Nowinski
,
C. J.
,
Robert
,
A.
,
Cantu
,
R. C.
,
Geiling
,
J.
,
Blusztajn
,
J. K.
,
Wolozin
,
B. L.
,
Ikezu
,
T.
,
Stein
,
T. D.
,
Budson
,
A. E.
,
Kowall
,
N. W.
,
Sharon
,
A.
,
Saman
,
S.
,
Hall
,
G. F.
,
Moss
,
W. C.
,
Robin
,
O.
,
Tanzi
,
R. E.
,
Stanton
,
P. K.
, and
Mckee
,
A. C.
,
2013
, “
Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model
,”
Sci. Transl. Med.
,
4
(
134
), pp.
134ra60
134ra60
.10.1126/scitranslmed.3003716
87.
Gullotti
,
D. M.
,
Beamer
,
M.
,
Panzer
,
M. B.
,
Chen
,
Y. C.
,
Patel
,
T. P.
,
Yu
,
A.
,
Jaumard
,
N.
,
Winkelstein
,
B.
,
Bass
,
C. R.
,
Morrison
,
B.
, and
Meaney
,
D. F.
,
2014
, “
Significant Head Accelerations Can Influence Immediate Neurological Impairments in a Murine Model of Blast-Induced Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
,
136
(
9
), p.
091004
.10.1115/1.4027873
88.
Sarvghad-Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
Correlative Analysis of Head Kinematics and Brain's Tissue Response: A Computational Approach Toward Understanding the Mechanisms of Blast TBI
,”
Shock Waves
,
27
(
6
), pp.
919
927
.10.1007/s00193-017-0749-1
89.
Mao
,
H.
,
Unnikrishnan
,
G.
,
Rakesh
,
V.
, and
Reifman
,
J.
,
2015
, “
Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves
,”
ASME J. Biomech. Eng.
,
137
(
12
), p.
124502
.10.1115/1.4031765
90.
Chen
,
Y.
, and
Huang
,
W.
,
2011
, “
Non-Impact, Blast-Induced Mild TBI and PTSD: Concepts and Caveats
,”
Brain Inj.
,
25
(
7–8
), pp.
641
650
.10.3109/02699052.2011.580313
91.
Rubio
,
J. E.
,
Skotak
,
M.
,
Alay
,
E.
,
Sundaramurthy
,
A.
,
Subramaniam
,
D. R.
,
Kote
,
V. B.
,
Yeoh
,
S.
,
Monson
,
K.
,
Chandra
,
N.
,
Unnikrishnan
,
G.
, and
Reifman
,
J.
,
2020
, “
Does Blast Exposure to the Torso Cause a Blood Surge to the Brain?
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
97
109
.10.3389/fbioe.2020.573647
92.
Suneson
,
A.
,
Hansson
,
H.
, and
Seeman
,
T.
,
1987
, “
Peripheral High Energy Missile Hits Cause Pressure Changes and Damage to the Nervous System: Experimental Studies on Pigs
,”
J. Trauma
,
27
(
7
), pp.
782
789
.10.1097/00005373-198707000-00016
93.
Suneson
,
A.
,
Hansson
,
H.
, and
Seeman
,
T.
,
1990
, “
Pressure Wave Injuries to the Nervous System Caused by High-Energy Missile Extremity Impact: Part II—Distant Effects on the Central Nervous System-a Light and Electron Microscopic Study on Pigs
,”
J. Trauma
,
30
(
3
), pp.
295
306
.10.1097/00005373-199003000-00007
94.
Hong
,
Y.
,
Sarntinoranont
,
M.
,
Subhash
,
G.
,
Canchi
,
S.
, and
King
,
M. A.
,
2016
, “
Localized Tissue Surrogate Deformation Due to Controlled Single Bubble Cavitation
,”
Exp. Mech.
,
56
(
1
), pp.
97
109
.10.1007/s11340-015-0024-2
95.
Canchi
,
S.
,
Kelly
,
K.
,
Hong
,
Y.
,
King
,
M. A.
,
Subhash
,
G.
, and
Sarntinoranont
,
M.
,
2017
, “
Controlled Single Bubble Cavitation Collapse Results in Jet-Induced Injury in Brain Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
74
, pp.
261
273
.10.1016/j.jmbbm.2017.06.018
96.
Wardlaw
,
A.
, and
Goeller
,
J.
,
2010
, “
Cavitation as a Possible Traumatic Brain Injury (TBI) Damage Mechanism
,”
26th Southern Biomedical Engineering Conference
, College Park, MD, Apr. 30–May 2.10.1007/978-3-642-14998-6_9
97.
Haniff
,
S.
, and
Taylor
,
P. A.
,
2017
, “
In Silico Investigation of Blast-Induced Intracranial Fluid Cavitation as It Potentially Leads to Traumatic Brain Injury
,”
Shock Waves
,
27
(
6
), pp.
929
945
.10.1007/s00193-017-0765-1
98.
Goeller
,
J.
,
Wardlaw
,
A.
,
Treichler
,
D.
,
O'Bruba
,
J.
, and
Weiss
,
G.
,
2012
, “
Investigation of Cavitation as a Possible Damage Mechanism in Blast-Induced Traumatic Brain Injury
,”
J. Neurotrauma
,
29
(
10
), pp.
1970
1981
.10.1089/neu.2011.2224
99.
Yu
,
X.
,
Azor
,
A.
,
J Sharp
,
D.
, and
Ghajari
,
M.
,
2020
, “
Mechanisms of Tensile Failure of Cerebrospinal Fluid in Blast Traumatic Brain Injury
,”
Extrem. Mech. Lett.
,
38
, p.
100739
.10.1016/j.eml.2020.100739
100.
Zhang
,
J.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
,
Gennarelli
,
T. A.
, and
Son
,
S. F.
,
2009
, “
Experimental Study of Blast-Induced Traumatic Brain Injury Using a Physical Head Model
,”
Stapp Car Crash J.
,
53
, pp.
1
13
.10.4271/2009-22-0008
101.
Varas
,
M. J.
,
Philippens
,
M.
,
Meijer
,
S. R.
,
van den Berg
,
A. C.
,
Sibma
,
P. C.
,
van Bree
,
J. L. M. J.
, and
de Vries
,
D. V. W. M.
,
2011
, “
Physics of IED Blast Shock Tube Simulations for MTBI Research
,”
Front. Neurol.
,
2
(
58
), pp.
1
14
.10.3389/fneur.2011.00058
102.
Zhu
,
F.
,
Wagner
,
C.
,
Dal
,
Leonardi
,
A. D. C.
,
Jin
,
X.
,
Vandevord
,
P.
,
Chou
,
C.
,
Yang
,
K. H.
, and
King
,
A.
,
2012
, “
Using a Gel/Plastic Surrogate to Study the Biomechanical Response of the Head Under Air Shock Loading: A Combined Experimental and Numerical Investigation
,”
Biomech. Model. Mechanobiol.
,
11
(
3–4
), pp.
341
353
.10.1007/s10237-011-0314-2
103.
Selvan
,
V.
,
Ganpule
,
S.
,
Kleinschmit
,
N.
, and
Chandra
,
N.
,
2013
, “
Blast Wave Loading Pathways in Heterogeneous Material Systems-Experimental and Numerical Approaches
,”
ASME J. Biomech. Eng.
,
135
(
6
), p.
061002
.10.1115/1.4024132
104.
Alay
,
E.
,
Skotak
,
M.
,
Chandrasekeran
,
S.
,
Ziner
,
J.
, and
Chandra
,
N.
,
2021
, “
Variations in Constitutive Properties of the Fluid Elicit Divergent Vibrational and Pressure Response Under Shock Wave Loading
,”
ASME J. Biomech. Eng.
,
143
(
1
), p.
011003
.10.1115/1.4047841
105.
Fournier
,
E.
,
Sullivan
,
D.
,
Bayne
,
T.
, and
Shewchenko
,
N.
,
2007
, “
Blast Headform Development-Litereture Review
,” Defence Research and Development Canada-Valcartier Research Center, QC, Canada, Report No. DRDC-CR
2007
234
.
106.
Foster
,
J. K.
,
Kortge
,
J. O.
, and
Wolanin
,
M. J.
,
1977
, “
Hybrid III—A Biomechanically-Based Crash Test Dummy
,”
SAE
Paper No. 770938.10.4271/770938
107.
Crowley
,
J. S.
,
Brozoski
,
F. T.
,
Duma
,
S. M.
, and
Kennedy
,
E. A.
,
2009
, “
Development of the Facial and Ocular Countermeasures Safety (FOCUS) Headform
,”
Aviat. Sp. Environ. Med.
,
80
(
9
), pp.
831
831
.10.3357/ASEM.21007.2009
108.
Ouellet
,
S.
,
Bir
,
C.
, and
Bouamoul
,
A.
,
2014
, “
Direct Comparison of the Primary Blast Response of a Physical Head Model With Post-Mortem Human Subjects
,” Defence Research and Development Canada-Valcartier Research Center, QC, Canada, Report No.
DRDC-RDDC-2014-P113
.https://apps.dtic.mil/sti/pdfs/AD1004215.pdf
109.
Chen
,
Y.
,
O'Shaughnessy
,
T. J.
,
Kamimori
,
G. H.
,
Horner
,
D. M.
,
Egnoto
,
M. J.
, and
Bagchi
,
A.
,
2020
, “
Role of Interfacial Conditions on Blast Overpressure Propagation Into the Brain
,”
Front. Neurol.
,
11
(
323
), pp.
1
10
.10.3389/fneur.2020.00323
110.
Bir
,
C.
,
2011
, “
Measuring Blast-Related Intracranial Pressure Within the Human Head
,” U.S. Army Medical Research and Material Command, MD, Report No.
ADA547306
. https://www.researchgate.net/publication/235028515_Measuring_Blast-Related_Intracranial_Pressure_Within_the_Human_Head
111.
Bowen
,
I. G.
,
Fletcher
,
E. R.
, and
Richmond
,
D. R.
,
1968
, “
Estimate of Man's Tolerence to the Direct Effects of Air Blast
,” Lovelace Foundation for Medical Education and Research, Albuquerque, NM, Report No.
AD0693105
.https://apps.dtic.mil/sti/citations/AD0693105
112.
Bass
,
C. R.
,
Rafaels
,
K. A.
, and
Salzar
,
R. S.
,
2008
, “
Pulmonary Injury Risk Assessment for Short-Duration Blasts
,”
J. Trauma Inj. Infect. Crit. Care
,
65
(
3
), pp.
604
615
.10.1097/TA.0b013e3181454ab4
113.
Rafaels
,
K. A.
,
Bass
,
C. R.
,
Panzer
,
M. B.
, and
Salzar
,
R. S.
,
2010
, “
Pulmonary Injury Risk Assessment for Long-Duration Blasts: A Meta-Analysis
,”
J. Trauma Inj. Infect. Crit. Care
,
69
(
2
), pp.
368
374
.10.1097/TA.0b013e3181e88122
114.
Panzer
,
M. B.
,
Bass
,
C. R.
,
Rafaels
,
K. A.
,
Shridharani
,
J.
, and
Capehart
,
B. P.
,
2012
, “
Primary Blast Survival and Injury Risk Assessment for Repeated Blast Exposures
,”
J. Trauma Acute Care Surg.
,
72
(
2
), pp.
454
466
.10.1097/TA.0b013e31821e8270
115.
Wood
,
G. W.
,
Panzer
,
M. B.
,
Cox
,
C. A.
, and
Bass
,
C. R.
,
2018
, “
Interspecies Scaling in Blast Pulmonary Trauma
,”
Hum. Factors Mech. Eng. Def. Saf.
,
2
(
1
), pp.
1
10
.10.1007/s41314-018-0013-1
116.
Jean
,
A.
,
Nyein
,
M. K.
,
Zheng
,
J. Q.
,
Moore
,
D. F.
,
Joannopoulos
,
J. D.
, and
Radovitzky
,
R.
,
2014
, “
An Animal-to-Human Scaling Law for Blast-Induced Traumatic Brain Injury Risk Assessment
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
43
), pp.
15310
15315
.10.1073/pnas.1415743111
117.
Shridharani
,
J. K.
,
Wood
,
G. W.
,
Panzer
,
M. B.
,
Capehart
,
B. P.
,
Nyein
,
M. K.
,
Radovitzky
,
R. A.
, and
Bass
,
C. R.
,
2012
, “
Porcine Head Response to Blast
,”
Front. Neurol
.,
3
, pp.
1
12
.10.3389/fneur.2012.00070
118.
Saunders
,
R. N.
,
Tan
,
X. G.
,
Qidwai
,
S. M.
, and
Bagchi
,
A.
,
2019
, “
Towards Identification of Correspondence Rules to Relate Traumatic Brain Injury in Different Species
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
2005
2018
.10.1007/s10439-018-02157-1
119.
Clemedson
,
C. J.
, and
Pettersson
,
H.
,
1955
, “
Propagation of a High Explosive Air Shock Wave Through Different Parts of an Animal Body
,”
Am. J. Physiol.
,
184
(
1
), pp.
119
126
.10.1152/ajplegacy.1955.184.1.119
120.
Clemedson
,
C. J.
,
1956
, “
Shock Wave Transmission to the Central Nervous System
,”
Acta Physiol. Scand.
,
37
(
2–3
), pp.
204
214
.10.1111/j.1748-1716.1956.tb01356.x
121.
Chavko
,
M.
,
Koller
,
W. A.
,
Prusaczyk
,
W. K.
, and
McCarron
,
R. M.
,
2007
, “
Measurement of Blast Wave by a Miniature Fiber Optic Pressure Transducer in the Rat Brain
,”
J. Neurosci. Methods
,
159
(
2
), pp.
277
281
.10.1016/j.jneumeth.2006.07.018
122.
Skotak
,
M.
,
Wang
,
F.
,
Alai
,
A.
,
Holmberg
,
A.
,
Harris
,
S.
,
Switzer
,
R. C.
, and
Chandra
,
N.
,
2013
, “
Rat Injury Model Under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures
,”
J. Neurotrauma
,
30
(
13
), pp.
1147
1160
.10.1089/neu.2012.2652
123.
Feng
,
K.
,
Zhang
,
L.
,
Jin
,
X.
,
Chen
,
C.
,
Kallakuri
,
S.
,
Saif
,
T.
,
Cavanaugh
,
J.
, and
King
,
A.
,
2016
, “
Biomechanical Responses of the Brain in Swine Subject to Free-Field Blasts
,”
Front. Neurol.
,
7
, pp.
1
12
.10.3389/fneur.2016.00179
124.
Leonardi
,
A. D. C.
,
Keane
,
N. J.
,
Bir
,
C.
,
Ryan
,
A. G.
,
Xu
,
L.
, and
VandeVord
,
P.
,
2012
, “
Head Orientation Affects the Intracranial Pressure Response Resulting From Shock Wave Loading in the Rat
,”
J. Biomech.
,
45
(
15
), pp.
2595
2602
.10.1016/j.jbiomech.2012.08.024
125.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S. T.
, and
McCarron
,
R. M.
,
2011
, “
Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain
,”
J. Neurosci. Methods
,
195
(
1
), pp.
61
66
.10.1016/j.jneumeth.2010.11.019
126.
Leonardi
,
A. D. C.
,
Bir
,
C.
,
Ritzel
,
D. V.
, and
VandeVord
,
P.
,
2011
, “
Intracranial Pressure Increases During Exposure to a Shock Wave
,”
J. Neurotrauma
,
28
(
1
), pp.
85
94
.10.1089/neu.2010.1324
127.
Skotak
,
M.
,
Alay
,
E.
, and
Chandra
,
N.
,
2018
, “
On the Accurate Determination of Shock Wave Time-Pressure Profile in the Experimental Models of Blast-Induced Neurotrauma
,”
Front. Neurol.
,
9
, pp.
1
11
.10.3389/fneur.2018.00052
128.
Chafi
,
S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2010
, “
Biomechanical Assessment of Brain Dynamic Responses Due to Blast Pressure Waves
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
490
504
.10.1007/s10439-009-9813-z
129.
Chen
,
A.
,
Louca
,
L. A.
, and
Elghazouli
,
A. Y.
,
2016
, “
Behaviour of Cylindrical Steel Drums Under Blast Loading Conditions
,”
Int. J. Impact Eng.
,
88
, pp.
39
53
.10.1016/j.ijimpeng.2015.09.007
130.
Ganpule
,
S.
,
Gu
,
L.
,
Alai
,
A.
, and
Chandra
,
N.
,
2012
, “
Role of Helmet in the Mechanics of Shock Wave Propagation Under Blast Loading Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1233
1244
.10.1080/10255842.2011.597353
131.
Yu
,
X.
, and
Ghajari
,
M.
,
2019
, “
An Assessment of Blast Modelling Techniques for Injury Biomechanics Research
,”
Int. J. Numer. Method. Biomed. Eng.
,
35
(
12
), pp.
1
15
. 10.1002/cnm.3258
132.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J. P.
, and
Rodríguez-Ferran
,
A.
,
2017
, “
Arbitrary Lagrangian-Eulerian Methods
,”
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
De Borst
, and
T. J.
Hughes
, John
Wiley and Sons, Hoboken, NJ
.10.1002/9781119176817.ecm2009
133.
Sarvghad-Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
CFD Modeling of the Underwash Effect of Military Helmets as a Possible Mechanism for Blast-Induced Traumatic Brain Injury
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
1
), pp.
16
26
.10.1080/10255842.2016.1193597
134.
Mott
,
D. R.
,
Young
,
T. R.
, and
Schwer
,
D. A.
,
2014
, “
Blast Loading on the Head Under a Military Helmet: Effect of Face Shield and Mandible Protection
,”
AIAA
Paper No. 2014-0948
.10.2514/6.2014-0948
135.
Chafi
,
S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2007
, “
Simulation of Blast-Head Interactions to Study Traumatic Brain Injury
,”
ASME
Paper No. IMECE2007-41629.10.1115/IMECE2007-41629
136.
Moore
,
D. F.
,
Jérusalem
,
A.
,
Nyein
,
M.
,
Noels
,
L.
,
Jaffee
,
M. S.
, and
Radovitzky
,
R. A.
,
2009
, “
Computational Biology—Modeling of Primary Blast Effects on the Central Nervous System
,”
Neuroimage
,
47
, pp.
T10
T20
.10.1016/j.neuroimage.2009.02.019
137.
Singh
,
D.
,
Cronin
,
D. S.
, and
Haladuick
,
T. N.
,
2014
, “
Head and Brain Response to Blast Using Sagittal and Transverse Finite Element Models
,”
Int. J. Numer. Method. Biomed. Eng.
,
30
(
4
), pp.
470
489
.10.1002/cnm.2612
138.
Grujicic
,
M.
,
Arakere
,
A.
,
Pandurangan
,
B.
,
Grujicic
,
A.
,
Littlestone
,
A.
, and
Barsoum
,
R.
,
2012
, “
Computational Investigation of Shock-Mitigation Efficacy of Polyurea When Used in a Combat Helmet: A Core Sample Analysis
,”
Multidiscip. Model. Mater. Struct.
,
8
(
3
), pp.
297
331
.10.1108/15736101211269122
139.
Eslaminejad
,
A.
,
Hosseini-Farid
,
M.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2018
, “
Brain Tissue Constitutive Material Models and the Finite Element Analysis of Blast-Induced Traumatic Brain Injury
,”
Sci. Iran
, 25(6), p.
3150
.10.24200/SCI.2018.20888
140.
Townsend
,
M.
,
Alay
,
E.
,
Skotak
,
M.
, and
Chandra
,
N.
,
2019
, “
Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
2019
2032
.10.1007/s10439-018-02178-w
141.
Chafi
,
M. S.
,
Dirisala
,
V.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2009
, “
A Finite Element Method Parametric Study of the Dynamic Response of the Human Brain With Different Cerebrospinal Fluid Constitutive Properties
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
223
(
8
), pp.
1003
1019
.10.1243/09544119JEIM631
142.
Gu
,
L.
,
Chafi
,
M. S.
,
Ganpule
,
S.
, and
Chandra
,
N.
,
2012
, “
The Influence of Heterogeneous Meninges on the Brain Mechanics Under Primary Blast Loading
,”
Compos. Part B Eng.
,
43
(
8
), pp.
3160
3166
.10.1016/j.compositesb.2012.04.014
143.
Sundaramurthy
,
A.
,
Skotak
,
M.
,
Alay
,
E.
,
Unnikrishnan
,
G.
,
Mao
,
H.
,
Duan
,
X.
,
Williams
,
S. T.
,
Harding
,
T. H.
,
Chandra
,
N.
,
Reifman
,
J.
,
Sundaramurthy
,
A.
,
Bell
,
E. D.
,
Yeoh
,
S.
,
Monson
,
K.
, and
Reifman
,
J.
,
2019
, “
A 3-D Rat Brain Model for Blast-Wave Exposure: Effects of Brain Vasculature and Material Properties
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
2033
2044
.10.1007/s10439-019-02277-2
144.
Teferra
,
K.
,
Tan
,
X. G.
,
Iliopoulos
,
A.
,
Michopoulos
,
J.
, and
Qidwai
,
S.
,
2018
, “
Effect of Human Head Morphological Variability on the Mechanical Response of Blast Overpressure Loading
,”
Int. J. Numer. Method. Biomed. Eng.
,
34
(
9
), pp.
1
18
.
145.
Panzer
,
M. B.
,
Myers
,
B. S.
, and
Bass
,
C. R.
,
2013
, “
Mesh Considerations for Finite Element Blast Modelling in Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
6
), pp.
612
621
.10.1080/10255842.2011.629615
146.
Roberts
,
J. C.
,
Harrigan
,
T. P.
,
Ward
,
E. E.
,
Nicolella
,
D.
,
Francis
,
L.
,
Eliason
,
T.
, and
Merkle
,
A. C.
,
2013
, “
The Influence of Neck Kinematics on Brain Pressures and Strains Under Blast Loading
,”
ASME
Paper No. IMECE2013-64821.10.1115/IMECE2013-64821
147.
Salimi Jazi
,
M.
,
Rezaei
,
A.
,
Azarmi
,
F.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2016
, “
Computational Biomechanics of Human Brain With and Without the Inclusion of the Body Under Different Blast Orientation
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
9
), pp.
1019
1031
.10.1080/10255842.2015.1088525
148.
Connor
,
T. A.
,
Meng
,
S.
,
Zouzias
,
D.
,
Burek
,
R.
,
Cernicchi
,
A.
,
De Bruyne
,
G.
,
Gilchrist
,
M.
,
Halldin
,
P.
, and
Ivans
,
J.
,
2016
, “
Current Standards for Sports and Automotive Helmets: A Review
,” Head Protection: A European Network for Advanced Designs in Safety, Europe, Report No.
Ref. Ares, 3151745
.http://www.heads-itn.eu/pdfs/Helmets_Standard_Evaluation.pdf
149.
Committee on Review of Test Protocols Used by the DoD to Test Combat Helmets and Board on Army Science and Technology,
2014
, “
Review of Department of Defense Test Protocols for Combat Helmets
,” National Academies Press, Washington, DC.https://www.ncbi.nlm.nih.gov/books/NBK224911/
150.
Carr
,
D. J.
,
Lewis
,
E.
, and
Mahoney
,
P. F.
,
2019
, “
UK Military Helmet Design and Test Methods
,”
J. R. Army Med. Corps
, 166(5), pp.
1
5
.
151.
Sun
,
M.
,
Saito
,
T.
,
Takayama
,
K.
, and
Tanno
,
H.
,
2005
, “
Unsteady Drag on a Sphere by Shock Wave Loading
,”
Shock Waves
,
14
(
1–2
), pp.
3
7
.10.1007/s00193-004-0235-4
152.
Ritzel
,
D. V.
,
Van Albert
,
S.
,
Sajja
,
V.
, and
Long
,
J.
,
2018
, “
Acceleration From Short-Duration Blast
,”
Shock Waves
,
28
(
1
), pp.
101
114
.10.1007/s00193-017-0768-y
153.
Singh
,
D.
, and
Cronin
,
D. S.
,
2017
, “
Efficacy of Visor and Helmet for Blast Protection Assessed Using a Computational Head Model
,”
Shock Waves
,
27
(
6
), pp.
905
918
.10.1007/s00193-017-0732-x
154.
Sturtevant
,
B.
, and
Kulkarny
,
V. A.
,
1976
, “
The Focusing of Weak Shock Waves
,”
J. Fluid Mech.
,
73
(
4
), pp.
651
671
.10.1017/S0022112076001559
155.
Hua
,
Y.
,
Wang
,
Y.
, and
Gu
,
L.
,
2017
, “
Primary Blast Waves Induced Brain Dynamics Influenced by Head Orientations
,”
Biomed. Eng. Lett.
,
7
(
3
), pp.
253
259
.10.1007/s13534-017-0027-2
156.
Akula
,
P. K.
,
Hua
,
Y.
, and
Gu
,
L.
,
2015
, “
Blast-Induced Mild Traumatic Brain Injury Through Ear Canal: A Finite Element Study
,”
Biomed. Eng. Lett.
,
5
(
4
), pp.
281
288
.10.1007/s13534-015-0204-0
157.
Bailoor
,
S.
,
Bhardwaj
,
R.
, and
Nguyen
,
T. D.
,
2015
, “
Effectiveness of Eye Armor During Blast Loading
,”
Biomech. Model. Mechanobiol.
,
14
(
6
), pp.
1227
1237
.10.1007/s10237-015-0667-z
158.
Sundaramurthy
,
A.
,
Skotak
,
M.
,
Alay
,
E.
,
Unnikrishnan
,
G.
,
Mao
,
H.
,
Duan
,
X.
,
Williams
,
S. T.
,
Harding
,
T. H.
,
Chandra
,
N.
, and
Reifman
,
J.
,
2018
, “
Assessment of the Effectiveness of Combat Eyewear Protection Against Blast Overpressure
,”
ASME J. Biomech. Eng.
,
140
(
7
), pp.
1
12
. 10.1115/1.4039823
159.
Williams
,
S. T.
,
Harding
,
T. H.
,
Statz
,
J. K.
, and
Martin
,
J. S.
,
2017
, “
Blast Wave Dynamics at the Cornea as a Function of Eye Protection Form and Fit
,”
Mil. Med.
,
182
(
S1
), pp.
226
229
.10.7205/MILMED-D-16-00042
160.
Tan
,
L. B.
,
Tse
,
K. M.
,
Tan
,
Y. H.
,
Sapingi
,
M. A. B.
,
Tan
,
V. B. C.
, and
Lee
,
H. P.
,
2017
, “
Face Shield Design Against Blast-Induced Head Injuries
,”
Int. J. Numer. Method. Biomed. Eng.
,
33
(
12
), pp.
1
17
.10.1002/cnm.2884
161.
Zhang
,
L.
,
Makwana
,
R.
, and
Sharma
,
S.
,
2013
, “
Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet
,”
Front. Neurol.
,
4
, pp.
1
12
.10.3389/fneur.2013.00088
162.
Lockhart
,
P. A.
, and
Cronin
,
D. S.
,
2015
, “
Helmet Liner Evaluation to Mitigate Head Response From Primary Blast Exposure
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
6
), pp.
635
645
.10.1080/10255842.2013.829460
163.
Tse
,
K. M.
,
Bin Tan
,
L.
,
Ali Bin Sapingi
,
M.
,
Franklyn
,
M.
,
Lee
,
P. V. S.
,
Beng Chye Tan
,
V.
, and
Pueh Lee
,
H.
,
2019
, “
The Role of a Composite Polycarbonate-Aerogel Face Shield in Protecting the Human Brain From Blast-Induced Injury: A Fluid–Structure Interaction (FSI) Study
,”
J. Sandw. Struct. Mater.
,
21
(
7
), pp.
2484
2511
.10.1177/1099636217733369
164.
Jeon
,
H.
, and
Eliasson
,
V.
,
2017
, “
Shock Wave Interactions With Liquid Sheets
,”
Exp. Fluids
,
58
(
4
), pp.
1
11
.10.1007/s00348-017-2300-7
165.
Berger
,
S.
,
Sadot
,
O.
, and
Ben-Dor
,
G.
,
2010
, “
Experimental Investigation on the Shock-Wave Load Attenuation by Geometrical Means
,”
Shock Waves
,
20
(
1
), pp.
29
40
.10.1007/s00193-009-0237-3
166.
Britan
,
A.
,
Igra
,
O.
,
Ben-Dor
,
G.
, and
Shapiro
,
H.
,
2006
, “
Shock Wave Attenuation by Grids and Orifice Plates
,”
Shock Waves
,
16
(
1
), pp.
1
15
.10.1007/s00193-006-0019-0
167.
Haris
,
A.
,
Lee
,
H. P.
, and
Tan
,
V. B. C.
,
2018
, “
An Experimental Study on Shock Wave Mitigation Capability of Polyurea and Shear Thickening Fluid Based Suspension Pads
,”
Def. Technol.
,
14
(
1
), pp.
12
18
.10.1016/j.dt.2017.08.004
168.
Jeon
,
H.
,
Gross
,
J. R.
,
Estabrook
,
S.
,
Koumlis
,
S.
,
Wan
,
Q.
,
Khanolkar
,
G. R.
,
Tao
,
X.
,
Mensching
,
D. M.
,
Lesnick
,
E. J.
, and
Eliasson
,
V.
,
2015
, “
Shock Wave Attenuation Using Foam Obstacles: Does Geometry Matter?
,”
Aerospace
,
2
(
2
), pp.
353
375
.10.3390/aerospace2020353
169.
Komissarov
,
P. V.
,
Borisov
,
A. A.
,
Sokolov
,
G. N.
, and
Lavrov
,
V. V.
,
2016
, “
Rigid Polyurethane Foam as an Efficient Material for Shock Wave Attenuation
,”
J. Phys. Conf. Ser.
,
751
(
1
).10.1088/1742-6596/751/1/012020
170.
Jourdan
,
G.
,
Mariani
,
C.
,
Houas
,
L.
,
Chinnayya
,
A.
,
Hadjadj
,
A.
,
Del Prete
,
E.
,
Haas
,
J. F.
,
Rambert
,
N.
,
Counilh
,
D.
, and
Faure
,
S.
,
2015
, “
Analysis of Shock-Wave Propagation in Aqueous Foams Using Shock Tube Experiments
,”
Phys. Fluids
,
27
(
5
), pp.
1
20
.10.1063/1.4919905
171.
Schimizze
,
B.
,
Son
,
S. F.
,
Goel
,
R.
,
Vechart
,
A. P.
, and
Young
,
L.
,
2013
, “
An Experimental and Numerical Study of Blast Induced Shock Wave Mitigation in Sandwich Structures
,”
Appl. Acoust.
,
74
(
1
), pp.
1
9
.10.1016/j.apacoust.2012.05.011
172.
Courtney
,
A.
,
Andrusiv
,
L.
, and
Courtney
,
M.
,
2013
, “
A Test of the Acoustic Impedance Model of Blast Wave Transmission
,”
J. Battlef. Technol.
,
16
(
3
), pp.
1
4
.https://search.informit.org/doi/10.3316/informit.745340038848473
173.
Courtney
,
E. D. S.
,
Courtney
,
A. C.
, and
Courtney
,
M. W.
,
2012
, “
Blast Wave Transmission Through Transparent Armor Materials
,”
J. Battlef. Technol.
,
15
(
2
), pp.
19
22
.https://search.informit.org/doi/10.3316/INFORMIT.504179178509386
174.
Petel
,
O. E.
,
Jetté
,
F. X.
,
Goroshin
,
S.
,
Frost
,
D. L.
, and
Ouellet
,
S.
,
2011
, “
Blast Wave Attenuation Through a Composite of Varying Layer Distribution
,”
Shock Waves
,
21
(
3
), pp.
215
224
.10.1007/s00193-010-0295-6
175.
Chanda
,
A.
, and
Graeter
,
R.
,
2018
, “
Human Skin-Like Composite Materials for Blast Induced Injury Mitigation
,”
J. Compos. Sci.
,
2
(
3
), pp.
44
20
.10.3390/jcs2030044
176.
Jenson
,
D.
, and
Unnikrishnan
,
V. U.
,
2015
, “
Energy Dissipation of Nanocomposite Based Helmets for Blast-Induced Traumatic Brain Injury Mitigation
,”
Compos. Struct.
,
121
, pp.
211
216
.10.1016/j.compstruct.2014.08.028
177.
Wadley
,
H. N. G.
,
Dharmasena
,
K. P.
,
He
,
M. Y.
,
McMeeking
,
R. M.
,
Evans
,
A. G.
,
Bui-Thanh
,
T.
, and
Radovitzky
,
R.
,
2010
, “
An Active Concept for Limiting Injuries Caused by Air Blasts
,”
Int. J. Impact Eng.
,
37
(
3
), pp.
317
323
.10.1016/j.ijimpeng.2009.06.006
178.
Rahimzadeh
,
T.
,
Arruda
,
E. M.
, and
Thouless
,
M. D.
,
2015
, “
Design of Armor for Protection Against Blast and Impact
,”
J. Mech. Phys. Solids
,
85
, pp.
98
111
.10.1016/j.jmps.2015.09.009
179.
Avasarala
,
S. R.
,
2009
, “
Blast Overpressure Relief Using Air Vacated Buffer Medium
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
, Cambridge, MA.
180.
Tan
,
K. T.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2014
, “
Blast-Wave Impact Mitigation Using Negative Effective Mass Density Concept of Elastic Metamaterials
,”
Int. J. Impact Eng.
,
64
, pp.
20
29
.10.1016/j.ijimpeng.2013.09.003
181.
Young
,
A. J.
,
Jaeger
,
J. J.
,
Phillips
,
Y. Y.
,
Yelverton
,
J. T.
, and
Richmond
,
D. R.
,
1985
, “
The Influence of Clothing on Human Intrathoracic Pressure During Airblast
,”
Aviat. Sp. Environ. Med.
,
56
(
1
), pp.
49
53
.https://pubmed.ncbi.nlm.nih.gov/3977804/
182.
Phillips
,
Y. Y.
,
Mundie
,
T. G.
,
Yelverton
,
J. T.
, and
Richmond
,
D. R.
,
1988
, “
Cloth Ballistic Vest Alters Response to Blast
,”
J. Trauma Inj. Infect. Crit. Care
,
28
(
1
), pp.
149
152
.10.1097/00005373-198801001-00030
183.
Skews
,
B. W.
, and
Bugarin
,
S.
,
2006
, “
Blast Pressure Amplification Due to Textile Coverings
,”
Text. Res. J.
,
76
(
4
), pp.
328
335
.10.1177/0040517506062264
184.
Hattingh
,
T. S.
, and
Skews
,
B. W.
,
2001
, “
Experimental Investigation of the Interaction of Shock Waves With Textiles
,”
Shock Waves
,
11
(
2
), pp.
115
123
.10.1007/PL00004064
185.
Gmitrzuk
,
M.
,
Starczewski
,
L.
,
Starczewski
,
K.
,
Danielewicz
,
D.
,
Nyc
,
R.
, and
Kosmala
,
L.
,
2018
, “
The Influence of the Explosive Ordnance Disposal Suit on the Bomb Squad Safety
,”
Probl. Mechatronics Armament Aviat. Saf. Eng.
,
2
(
32
), pp.
27
44
. 10.5604/01.3001.0012.1099
186.
Meng
,
Z. F.
,
Cao
,
X. Y.
,
Ming
,
F. R.
,
Zhang
,
A. M.
, and
Wang
,
B.
,
2019
, “
Study on the Pressure Characteristics of Shock Wave Propagating Across Multilayer Structures During Underwater Explosion
,”
Shock Vib.
,
2019
, pp.
1
19
.10.1155/2019/9026214
187.
Medvedev
,
S. P.
,
Khomik
,
S. V.
,
Cherepanova
,
T. T.
,
Agafonov
,
G. L.
,
Cherepanov
,
A. A.
,
Mikhalkin
,
V. N.
,
Kiverin
,
A. D.
,
Petukhov
,
V. A.
,
Yakovenko
,
I. S.
, and
Betev
,
A. S.
,
2019
, “
Interaction of Blast Waves With Helium-Filled Rubber Balloons
,”
J. Phys. Conf. Ser.
, (
1
), p.
1147
.10.1088/1742-6596/1147/1/012021
188.
Kurt
,
M.
,
Laksari
,
K.
,
Kuo
,
C.
,
Grant
,
G. A.
, and
Camarillo
,
D. B.
,
2017
, “
Modeling and Optimization of Airbag Helmets for Preventing Head Injuries in Bicycling
,”
Ann. Biomed. Eng.
,
45
(
4
), pp.
1148
1160
.10.1007/s10439-016-1732-1
189.
Serre
,
T.
,
Masson
,
C.
,
Llari
,
M.
,
Canu
,
B.
,
Py
,
M.
,
Serre
,
T.
,
Masson
,
C.
,
Llari
,
M.
,
Canu
,
B.
,
Py
,
M.
, and
Jacket
,
A.
,
2019
, “
Airbag Jacket for Motorcyclists: Evaluation of Real Effectiveness
,”
International Conference on the Biomechanics of Injury
, Florence, Italy, Sept. 11–13, pp.
533
547
.https://hal.archives-ouvertes.fr/hal-02958978/document
190.
Marconi
,
E.
,
Gatto
,
F.
, and
Massaro
,
M.
,
2018
, “
Numerical and Experimental Assessment of the Performance of Wearable Airbags for Motorcycle Riders
,”
Proceedings of the World Congress on Engineering
, London, UK, July 4–6, Vol. II, pp.
805
810
.https://www.researchgate.net/publication/326439988_Numerical_and_Experimental_Assessment_of_the_Performance_of_Wearable_Airbags_for_Motorcycle_Riders
You do not currently have access to this content.