Abstract

Although alterations in bone mineral density (BMD) at the proximal tibia have been suggested to play a role in various musculoskeletal conditions, their pathophysiological implications and their value as markers for diagnosis remain unclear. Improving our understanding of proximal tibial BMD requires novel tools for three-dimensional (3D) analysis of BMD distribution. Three-dimensional imaging is possible with computed tomography (CT), but computational anatomy algorithms are missing to standardize the quantification of 3D proximal tibial BMD, preventing distribution analyses. The objectives of this study were to develop and assess a registration method, suitable with routine knee CT scans, to allow the standardized quantification of 3D BMD distribution in the proximal tibia. Second, as an example of application, the study aimed to characterize the distribution of BMD below the tibial cartilages in healthy knees. A method was proposed to register both the surface (vertices) and the content (voxels) of proximal tibias. The method combines rigid transformations to account for differences in bone size and position in the scanner's field of view and to address inconsistencies in the portion of the tibial shaft included in routine CT scan, with a nonrigid transformation locally matching the proximal tibias. The method proved to be highly reproducible and provided a comprehensive description of the relationship between bone depth and BMD. Specifically it reported significantly higher BMD in the first 6 mm of bone than deeper in the proximal tibia. In conclusion, the proposed method offers promising possibilities to analyze BMD and other properties of the tibia in 3D.

References

1.
Lo
,
G. H.
,
Niu
,
J.
,
McLennan
,
C. E.
,
Kiel
,
D. P.
,
McLean
,
R. R.
,
Guermazi
,
A.
,
Genant
,
H. K.
,
McAlindon
,
T. E.
, and
Hunter
,
D. J.
,
2008
, “
Meniscal Damage Associated With Increased Local Subchondral Bone Mineral Density: A Framingham Study
,”
Osteoarthritis Cartilage
,
16
(
2
), pp.
261
267
.10.1016/j.joca.2007.07.007
2.
van der Wal
,
R. J.
,
Attia
,
D.
,
Waarsing
,
E. H.
,
Thomassen
,
B. J.
, and
van Arkel
,
E. R.
,
2018
, “
Two-Year Follow-Up of Bone Mineral Density Changes in the Knee After Meniscal Allograft Transplantation: Results of an Explorative Study
,”
Knee
,
25
(
6
), pp.
1091
1099
.10.1016/j.knee.2018.06.005
3.
van Meer
,
B. L.
,
Waarsing
,
J. H.
,
van Eijsden
,
W. A.
,
Meuffels
,
D. E.
,
van Arkel
,
E. R. A.
,
Verhaar
,
J. A. N.
,
Bierma-Zeinstra
,
S. M. A.
, and
Reijman
,
M.
,
2014
, “
Bone Mineral Density Changes in the Knee Following Anterior Cruciate Ligament Rupture
,”
Osteoarthritis Cartilage
,
22
(
1
), pp.
154
161
.10.1016/j.joca.2013.11.005
4.
Bayar
,
A.
,
Sarıkaya
,
S.
,
Keser
,
S.
,
Özdolap
,
Ş.
,
Tuncay
,
İ.
, and
Ege
,
A.
,
2008
, “
Regional Bone Density Changes in Anterior Cruciate Ligament Deficient Knees: A DEXA Study
,”
Knee
,
15
(
5
), pp.
373
377
.10.1016/j.knee.2008.05.005
5.
Edwards
,
W.
,
Schnitzer
,
T. J.
, and
Troy
,
K.
,
2014
, “
Bone Mineral and Stiffness Loss at the Distal Femur and Proximal Tibia in Acute Spinal Cord Injury
,”
Osteoporosis Int.
,
25
(
3
), pp.
1005
1015
.10.1007/s00198-013-2557-5
6.
Garland
,
D. E.
,
Stewart
,
C. A.
,
Adkins
,
R. H.
,
Hu
,
S. S.
,
Rosen
,
C.
,
Liotta
,
F. J.
, and
Weinstein
,
D. A.
,
1992
, “
Osteoporosis After Spinal Cord Injury
,”
J. Orthop. Res.
,
10
(
3
), pp.
371
378
.10.1002/jor.1100100309
7.
Shi
,
M.
,
Chen
,
L.
,
Wu
,
H.
,
Wang
,
Y.
,
Wang
,
W.
,
Zhang
,
Y.
, and
Yan
,
S.
,
2018
, “
Effect of Bisphosphonates on Periprosthetic Bone Loss After Total Knee Arthroplasty: A Meta-Analysis of Randomized Controlled Trials
,”
BMC Musculoskelet. Disord.
,
19
(
1
), p.
177
.10.1186/s12891-018-2101-z
8.
Winther
,
N.
,
Jensen
,
C.
,
Petersen
,
M.
,
Lind
,
T.
,
Schrøder
,
H.
, and
Petersen
,
M.
,
2016
, “
Changes in Bone Mineral Density of the Proximal Tibia After Uncemented Total Knee Arthroplasty. A Prospective Randomized Study
,”
Int. Orthop.
,
40
(
2
), pp.
285
294
.10.1007/s00264-015-2852-1
9.
Hulet
,
C.
,
Sabatier
,
J. P.
,
Souquet
,
D.
,
Locker
,
B.
,
Marcelli
,
C.
, and
Vielpeau
,
C.
,
2002
, “
Distribution of Bone Mineral Density at the Proximal Tibia in Knee Osteoarthritis
,”
Calcif. Tissue Int.
,
71
(
4
), pp.
315
22
. Oct10.1007/s00223-001-2112-9
10.
Lo
,
G. H.
,
Zhang
,
Y.
,
McLennan
,
C.
,
Niu
,
J.
,
Kiel
,
D. P.
,
McLean
,
R. R.
,
Aliabadi
,
P.
,
Felson
,
D. T.
, and
Hunter
,
D. J.
,
2006
, “
The Ratio of Medial to Lateral Tibial Plateau Bone Mineral Density and Compartment-Specific Tibiofemoral Osteoarthritis
,”
Osteoarthritis Cartilage
,
14
(
10
), pp.
984
990
.10.1016/j.joca.2006.04.010
11.
Li
,
W.
,
Kezele
,
I.
,
Collins
,
D. L.
,
Zijdenbos
,
A.
,
Keyak
,
J.
,
Kornak
,
J.
,
Koyama
,
A.
,
Saeed
,
I.
,
LeBlanc
,
A.
,
Harris
,
T.
,
Lu
,
Y.
, and
Lang
,
T.
,
2007
, “
Voxel-Based Modeling and Quantification of the Proximal Femur Using Inter-Subject Registration of Quantitative CT Images
,”
Bone
,
41
(
5
), pp.
888
895
.10.1016/j.bone.2007.07.006
12.
Carballido-Gamio
,
J.
,
Harnish
,
R.
,
Saeed
,
I.
,
Streeper
,
T.
,
Sigurdsson
,
S.
,
Amin
,
S.
,
Atkinson
,
E. J.
,
Therneau
,
T. M.
,
Siggeirsdottir
,
K.
,
Cheng
,
X.
,
Melton
,
L. J.
,
Keyak
,
J.
,
Gudnason
,
V.
,
Khosla
,
S.
,
Harris
,
T. B.
, and
Lang
,
T. F.
,
2013
, “
Proximal Femoral Density Distribution and Structure in Relation to Age and Hip Fracture Risk in Women
,”
J Bone Miner Res
,
28
(
3
), pp.
537
46
.10.1002/jbmr.1802
13.
Bredbenner
,
T. L.
,
Mason
,
R. L.
,
Havill
,
L. M.
,
Orwoll
,
E. S.
,
Nicolella
,
D. P.
, and
Study
,
O. F. I. M.
,
for the Osteoporotic Fractures in Men (MrOS) Study
,
2014
, “
Fracture Risk Predictions Based on Statistical Shape and Density Modeling of the Proximal Femur
,”
J. Bone Miner. Res.
,
29
(
9
), pp.
2090
2100
.10.1002/jbmr.2241
14.
Marangalou
,
J. H.
,
Ito
,
K.
,
Taddei
,
F.
, and
Van Rietbergen
,
B.
,
2014
, “
Inter-Individual Variability of Bone Density and Morphology Distribution in the Proximal Femur and T12 Vertebra
,”
Bone
,
60
, pp.
213
220
.10.1016/j.bone.2013.12.019
15.
Li
,
W.
,
Kornak
,
J.
,
Harris
,
T.
,
Keyak
,
J.
,
Li
,
C.
,
Lu
,
Y.
,
Cheng
,
X.
, and
Lang
,
T.
,
2009
, “
Identify Fracture-Critical Regions Inside the Proximal Femur Using Statistical Parametric Mapping
,”
Bone
,
44
(
4
), pp.
596
602
.10.1016/j.bone.2008.12.008
16.
Engelke
,
K.
,
Libanati
,
C.
,
Fuerst
,
T.
,
Zysset
,
P.
, and
Genant
,
H.
,
2013
, “
Advanced CT Based In Vivo Methods for the Assessment of Bone Density, Structure, and Strength
,”
Curr. Osteoporos. Rep.
,
11
(
3
), pp.
246
255
.10.1007/s11914-013-0147-2
17.
Zerfass
,
P.
,
Lowitz
,
T.
,
Museyko
,
O.
,
Bousson
,
V.
,
Laouisset
,
L.
,
Kalender
,
W. A.
,
Laredo
,
J.-D.
, and
Engelke
,
K.
,
2012
, “
An Integrated Segmentation and Analysis Approach for QCT of the Knee to Determine Subchondral Bone Mineral Density and Texture
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2449
2458
.10.1109/TBME.2012.2202660
18.
Lowitz
,
T.
,
Museyko
,
O.
,
Bousson
,
V.
,
Kalender
,
W. A.
,
Laredo
,
J. D.
, and
Engelke
,
K.
,
2014
, “
Characterization of Knee Osteoarthritis-Related Changes in Trabecular Bone Using Texture Parameters at Various Levels of Spatial Resolution—a Simulation Study
,”
BoneKEy Rep.
,
3
, p. 615.10.1038/bonekey.2014.110
19.
Johnston
,
J. D.
,
Masri
,
B. A.
, and
Wilson
,
D. R.
,
2009
, “
Computed Tomography Topographic Mapping of Subchondral Density (CT-TOMASD) in Osteoarthritic and Normal Knees: Methodological Development and Preliminary Findings
,”
Osteoarthritis Cartilage
,
17
(
10
), pp.
1319
26
. Oct10.1016/j.joca.2009.04.013
20.
Bennell
,
K. L.
,
Creaby
,
M. W.
,
Wrigley
,
T. V.
, and
Hunter
,
D. J.
,
2008
, “
Tibial Subchondral Trabecular Volumetric Bone Density in Medial Knee Joint Osteoarthritis Using Peripheral Quantitative Computed Tomography Technology
,”
Arthritis Rheum
,
58
(
9
), pp.
2776
2785
. 10.1002/art.23795
21.
Bousson
,
V.
,
Lowitz
,
T.
,
Laouisset
,
L.
,
Engelke
,
K.
, and
Laredo
,
J. D.
,
2012
, “
CT Imaging for the Investigation of Subchondral Bone in Knee Osteoarthritis
,”
Osteoporos Int.
,
23
(
S8
), pp.
861
865
.10.1007/s00198-012-2169-5
22.
Omoumi
,
P.
,
Babel
,
H.
,
Jolles
,
B. M.
, and
Favre
,
J.
,
2017
, “
Quantitative Regional and Sub-Regional Analysis of Femoral and Tibial Subchondral Bone Mineral Density (sBMD) Using Computed Tomography (CT): Comparison of Non-Osteoarthritic (OA) and Severe OA Knees
,”
Osteoarthritis Cartilage
,
25
(
11
), pp.
1850
1857
. Nov10.1016/j.joca.2017.07.014
23.
Carballido-Gamio
,
J.
, and
Nicolella
,
D. P.
,
2013
, “
Computational Anatomy in the Study of Bone Structure
,”
Curr. Osteoporos. Rep.
,
11
(
3
), pp.
237
45
.10.1007/s11914-013-0148-1
24.
Oliveira
,
F. P.
, and
Tavares
,
J. M.
,
2014
, “
Medical Image Registration: A Review
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
2
), pp.
73
93
.10.1080/10255842.2012.670855
25.
Miyabara
,
Y.
,
Holmes
,
D.
, III
,
Camp
,
J.
,
Miller
,
V. M.
, and
Kearns
,
A.
,
2012
, “
Comparison of Calibrated and Uncalibrated Bone Mineral Density by CT to DEXA in Menopausal Women
,”
Climacteric
,
15
(
4
), pp.
374
381
.10.3109/13697137.2011.618566
26.
Boomsma
,
M. F.
,
Slouwerhof
,
I.
,
van Dalen
,
J. A.
,
Edens
,
M. A.
,
Mueller
,
D.
,
Milles
,
J.
, and
Maas
,
M.
,
2015
, “
Use of Internal References for Assessing CT Density Measurements of the Pelvis as Replacement for Use of an External Phantom
,”
Skelet. Radiol.
,
44
(
11
), pp.
1597
1602
.10.1007/s00256-015-2206-5
27.
Wolff
,
J.
,
1892
, “
Das Gesetz Der Transformation Der Knochen
,”
A Hirshwald
,
1
, pp.
1
152
.https://www.worldcat.org/title/gesetz-der-transformation-der-knochen/oclc/41446398
28.
Johnston
,
J. D.
,
Kontulainen
,
S. A.
,
Masri
,
B. A.
, and
Wilson
,
D. R.
,
2010
, “
A Comparison of Conventional Maximum Intensity Projection With a New Depth-Specific Topographic Mapping Technique in the CT Analysis of Proximal Tibial Subchondral Bone Density
,”
Skelet. Radiol.
,
39
(
9
), pp.
867
76
.10.1007/s00256-009-0835-2
29.
Bryan
,
R.
,
Nair
,
P. B.
, and
Taylor
,
M.
,
2009
, “
Use of a Statistical Model of the Whole Femur in a Large Scale, Multi-Model Study of Femoral Neck Fracture Risk
,”
J. Biomech.
,
42
(
13
), pp.
2171
2176
.10.1016/j.jbiomech.2009.05.038
30.
Nicolella
,
D. P.
, and
Bredbenner
,
T. L.
,
2012
, “
Development of a Parametric Finite Element Model of the Proximal Femur Using Statistical Shape and Density Modelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
2
), pp.
101
110
.10.1080/10255842.2010.515984
31.
Favre
,
J.
,
Erhart-Hledik
,
J. C.
,
Blazek
,
K.
,
Fasel
,
B.
,
Gold
,
G. E.
, and
Andriacchi
,
T. P.
,
2017
, “
Anatomically Standardized Maps Reveal Distinct Patterns of Cartilage Thickness With Increasing Severity of Medial Compartment Knee Osteoarthritis
,”
J. Orthop. Res.
,
35
(
11
), pp.
2442
2451
. Nov10.1002/jor.23548
32.
Möller
,
T.
,
1997
, “
A Fast Triangle-Triangle Intersection Test
,”
J. Graphics Tools
,
2
(
2
), pp.
25
30
.10.1080/10867651.1997.10487472
33.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.10.1007/PL00011391
34.
Amberg
,
B.
,
Romdhani
,
S.
, and
Vetter
,
T.
,
2007
, “
Optimal Step Nonrigid ICP Algorithms for Surface Registration
,”
Computer Vision and Pattern Recognition, 2007, CVPR'07, IEEE Conference
, Minneapolis, MN, June 17–22, pp.
1
8
.10.1109/CVPR.2007.383165
35.
Donato
,
G.
, and
Belongie
,
S. J.
,
2003
, “
Approximation Methods for Thin Plate Spline Mappings and Principal Warps
,”
A.
Heyden
,
G.
Sparr
,
M.
Nielsen
, and
P.
Johansen
, eds.,
Proceedings, Part III, Lecture Notes in Computer Science, Computer Vision – ECCV 2002: 7th European Conference on Computer Vision
,
Copenhagen, Denmark
, pp.
21
31
.http://cseweb.ucsd.edu/~sjb/pami_tps.pdf
36.
Botsch
,
M.
,
Kobbelt
,
L.
,
Pauly
,
M.
,
Alliez
,
P.
, and
Lévy
,
B.
,
2010
,
Polygon Mesh Processing
,
AK Peters/CRC Press
,
Natick, MA
.
37.
Rockafellar
,
R. T.
, and
Wets
,
R. J.-B.
,
1998
,
Variational Analysis
,
Springer
,
Berlin
.
38.
Fisher
,
R. A.
,
1992
, “
Statistical Methods for Research Workers
,”
Breakthroughs in Statistics
,
Springer
,
New York
, pp.
66
70
.
39.
Brock
,
K. K.
,
Mutic
,
S.
,
McNutt
,
T. R.
,
Li
,
H.
, and
Kessler
,
M. L.
,
2017
, “
Use of Image Registration and Fusion Algorithms and Techniques in Radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132
,”
Med. Phys.
,
44
(
7
), pp.
e43
e76
.10.1002/mp.12256
40.
Pothuaud
,
L.
,
Carceller
,
P.
, and
Hans
,
D.
,
2008
, “
Correlations Between Grey-Level Variations in 2D Projection Images (TBS) and 3D Microarchitecture: Applications in the Study of Human Trabecular Bone Microarchitecture
,”
Bone
,
42
(
4
), pp.
775
87
. Apr10.1016/j.bone.2007.11.018
41.
Ambellan
,
F.
,
Tack
,
A.
,
Ehlke
,
M.
, and
Zachow
,
S.
,
2019
, “
Automated Segmentation of Knee Bone and Cartilage Combining Statistical Shape Knowledge and Convolutional Neural Networks: Data From the Osteoarthritis Initiative
,”
Med. Image Anal.
,
52
, pp.
109
118
.10.1016/j.media.2018.11.009
42.
Heimann
,
T.
,
Morrison
,
B. J.
,
Styner
,
M. A.
,
Niethammer
,
M.
, and
Warfield
,
S.
,
2010
, “
Segmentation of Knee Images: A Grand Challenge
,”
Proc. MICCAI Workshop on Medical Image Analysis for the Clinic
,
Beijing, China
, Sept. 20–24, pp.
207
214
.http://www.ski10.org/ski10.pdf
43.
Taddei
,
F.
,
Cristofolini
,
L.
,
Martelli
,
S.
,
Gill
,
H.
, and
Viceconti
,
M.
,
2006
, “
Subject-Specific Finite Element Models of Long Bones: An In Vitro Evaluation of the Overall Accuracy
,”
J. Biomech.
,
39
(
13
), pp.
2457
2467
.10.1016/j.jbiomech.2005.07.018
You do not currently have access to this content.