Abstract

Computational models of the human neck have been developed to assess human response in impact scenarios; however, the assessment and validation of such models is often limited to a small number of experimental data sets despite being used to evaluate the efficacy of safety systems and potential for injury risk in motor vehicle collisions. In this study, a full neck model (NM) with active musculature was developed from previously validated motion segment models of the cervical spine. Tissue mechanical properties were implemented from experimental studies, and were not calibrated. The neck model was assessed with experimental studies at three levels of increasing complexity: ligamentous cervical spine in axial rotation, axial tension, frontal impact, and rear impact; postmortem human subject (PMHS) rear sled impact; and human volunteer frontal and lateral sled tests using an open-loop muscle control strategy. The neck model demonstrated good correlation with the experiments ranging from quasi-static to dynamic, assessed using kinematics, kinetics, and tissue-level response. The contributions of soft tissues, neck curvature, and muscle activation were associated with higher stiffness neck response, particularly for low severity frontal impact. Experiments presenting single-value data limited assessment of the model, while complete load history data and cross-correlation enabled improved evaluation of the model over the full loading history. Tissue-level metrics demonstrated higher variability and therefore lower correlation relative to gross kinematics, and also demonstrated a dependence on the local tissue geometry. Thus, it is critical to assess models at the gross kinematic and the tissue levels.

References

1.
Chen
,
Y.
,
Tang
,
Y.
,
Vogel
,
L. C.
, and
DeVivo
,
M. J.
,
2013
, “
Causes of Spinal Cord Injury
,”
Top. Spinal Cord Injury Rehabil.
,
19
(
1
), pp.
1
8
.10.1310/sci1901-1
2.
Parenteau
,
C. S.
, and
Viano
,
D. C.
,
2014
, “
Spinal Fracture-Dislocations and Spinal Cord Injuries in Motor Vehicle Crashes
,”
Traffic Injury Prev.
,
15
(
7
), pp.
694
700
.10.1080/15389588.2013.867434
3.
Stemper
,
B. D.
, and
Corner
,
B. D.
,
2016
, “
Whiplash-Associated Disorders: Occupant Kinematics and Neck Morphology
,”
J. Orthop. Sports Phys. Ther.
,
46
(
10
), pp.
834
844
.10.2519/jospt.2016.6846
4.
Trempel
,
R. E.
,
Zuby
,
D. S.
, and
Edwards
,
M. A.
,
2016
, “
IIHS Head Restraint Ratings and Insurance Injury Claim Rates
,”
Traffic Injury Prev.
,
17
(
6
), pp.
590
596
.10.1080/15389588.2015.1128534
5.
Schmitt
,
K. U.
,
Niederer
,
P. F.
,
Cronin
,
D. S.
,
Muser
,
M. H.
, and
Walz
,
F.
,
2019
,
Trauma Biomechanics: An Introduction to Injury Biomechanics
,
5
th ed.,
Springer
,
New York
, Chap.
2
.
6.
Yang
,
K.-H.
,
2018
,
Basic Finite Element Method as Applied to Injury Biomechanics
,
Elsevier
,
New York
, Chap.
13
.
7.
DeJager
,
M.
,
Sauren
,
A.
,
Thunnissen
,
J.
, and
Wismans
,
J.
,
1994
, “
A Three-Dimensional Head-Neck Model: Validation for Frontal and Lateral Impacts
,”
38th Stapp Car Crash Conference Proceedings
, Vol.
38
, Fort Lauderdale, FL, Oct. 31–Nov. 4, pp.
93
109
.10.4271/942211
8.
DeJager
,
M.
,
Sauren
,
A.
,
Thunnissen
,
J.
, and
Wismans
,
J.
,
1996
, “
A Global and a Detailed Mathematical Model for Head-Neck Dynamics
,”
40th Stapp Car Crash Conference Proceedings
, Vol.
40
, Albuquerque, NM, Nov. 4–6, pp.
269
281
.https://pure.tue.nl/ws/files/4414341/601137.pdf
9.
Van der Horst
,
M. J.
,
Thunnissen
,
J.
,
Happee
,
R.
,
van Haaster
,
R. M. H. P.
, and
Wismans
,
J.
,
1997
, “
The Influence of Muscle Activity on Head-Neck Response During Impact
,”
41st Stapp Car Crash Conference Proceedings
, Vol.
41
, Lake Buena Vista, FL, Nov. 13–14, pp.
487
507
.https://research.tue.nl/en/publications/the-influence-of-muscle-activity-on-head-neck-response-during-imp
10.
Deng
,
Y. C.
, and
Goldsmith
,
W.
,
1987
, “
Response of a Human Head/Neck/Upper-Torso Replica to Dynamic Loading II: Analytical/Numerical Model
,”
J. Biomech.
,
20
(
5
), pp.
487
497
.10.1016/0021-9290(87)90249-1
11.
Wismans
,
J.
,
van Oorschot
,
H.
, and
Woltring
,
H. J.
,
1986
, “
Omni-Directional Human Head-Neck Response
,”
30th Stapp Car Crash Conference Proceedings
, Vol.
30
,
San Diego, CA
, Oct. 27–29, pp.
313
331
.https://www.jstor.org/stable/44470984?seq=1
12.
Thunnissen
,
J.
,
Wismans
,
J.
,
Ewing
,
C. L.
, and
Thomas
,
D. J.
,
1995
, “
Human Volunteer Head-Neck Response in Frontal Flexion: A New Analysis
,”
39th Stapp Car Crash Conference Proceedings
, Vol.
39
, San Diego, CA, Nov. 8–10, pp.
439
460
.10.4271/952721
13.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech.
,
14
(
1
), pp.
41
53
.10.1016/S0268-0033(98)00036-9
14.
Zhang
,
Q. H.
,
Teo
,
E. C.
,
Ng
,
H. W.
, and
Lee
,
V. S.
,
2006
, “
Finite Element Analysis of Moment-Rotation Relationships for Human Cervical Spine
,”
J. Biomech.
,
39
(
1
), pp.
189
193
.10.1016/j.jbiomech.2004.10.029
15.
del Palomar
,
A. P.
,
Calvo
,
B.
, and
Doblaré
,
M.
,
2008
, “
An Accurate Finite Element Model of the Cervical Spine Under Quasi-Static Loading
,”
J. Biomech.
,
41
(
3
), pp.
523
531
.10.1016/j.jbiomech.2007.10.012
16.
Wheeldon
,
J. A.
,
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2008
, “
Validation of a Finite Element Model of the Young Normal Lower Cervical Spine
,”
Ann. Biomed. Eng.
,
36
(
9
), pp.
1458
1469
.10.1007/s10439-008-9534-8
17.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
,
Shivanna
,
K.
,
Smucker
,
J.
, and
Grosland
,
N.
,
2010
, “
Validation of a C2-C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys.
,
32
(
5
), pp.
482
489
.10.1016/j.medengphy.2010.03.001
18.
Erbulut
,
D. U.
,
Zafarparandeh
,
I.
,
Lazoglu
,
I.
, and
Ozer
,
A. F.
,
2014
, “
Application of an Asymmetric Finite Element Model of the C2-T1 Cervical Spine for Evaluation the Role of Soft Tissues in Stability
,”
Med. Eng. Phys.
,
36
(
7
), pp.
915
921
.10.1016/j.medengphy.2014.02.020
19.
Osth
,
J.
,
Brolin
,
K.
,
Svensson
,
M. Y.
, and
Linder
,
A.
,
2016
, “
A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads
,”
ASME J. Biomech. Eng.
,
138
(
6
), p. 061005.10.1115/1.4032966
20.
Osth
,
J.
,
Mendoza-Vazquez
,
M.
,
Sato
,
F.
,
Svensson
,
M. Y.
,
Linder
,
A.
, and
Brolin
,
K.
,
2017
, “
A Female Head-Neck Model for Rear Impact Simulations
,”
J. Biomech.
,
51
, pp.
49
56
.10.1016/j.jbiomech.2016.11.066
21.
Panzer
,
M. B.
,
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1147
1159
.10.1016/j.medengphy.2011.05.004
22.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.10.1007/s10439-011-0315-4
23.
Deng
,
B.
,
Begeman
,
P. C.
,
Yang
,
K. H.
,
Tashman
,
S.
, and
King
,
A. I.
,
2000
, “
Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts
,”
44th Stapp Car Crash Conference Proceedings
, Vol.
44
, Atlanta, GA, Nov. 6–8, pp.
171
188
.https://pubmed.ncbi.nlm.nih.gov/17458726/
24.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4-C5 Segment Finite Element Model Development, Validation and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.10.1016/j.jbiomech.2008.11.036
25.
Iwamoto
,
M.
,
Nakahira
,
Y.
, and
Kimpara
,
H.
,
2015
, “
Development and Validation of the Total Human Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanism in Precrash and During Crash
,”
Traffic Injury Prev.
,
16
(
Suppl. 1
), pp.
S36
S48
.10.1080/15389588.2015.1015000
26.
Osth
,
J.
,
Brolin
,
K.
,
Carlsson
,
S.
,
Wismans
,
J.
, and
Davidsson
,
J.
,
2012
, “
The Occupant Response to Autonomous Braking: A Modeling Approach That Accounts for Active Musculature
,”
Traffic Injury Prev.
,
13
(
3
), pp.
265
277
.10.1080/15389588.2011.649437
27.
Iwamoto
,
M.
,
Kisanuki
,
Y.
,
Watanabe
,
I.
,
Furusu
,
K.
,
Miki
,
K.
, and
Hasegawa
,
J.
,
2002
, “
Development of a Finite Element Model of the Total Human Model for Safety (THUMS) and Application to Injury Reconstruction
,” International Research Council on Biomechanics of Injury (
IRCOBI
), Munich, Germany, Sept. 18–20.http://www.ircobi.org/wordpress/downloads/irc0111/2002/Session1/1.2.pdf
28.
Arbogast
,
K. B.
,
Balasubramanian
,
S.
,
Seacrist
,
T.
,
Maltese
,
M. R.
,
Garcia-Espana
,
J. F.
,
Hopely
,
T.
,
Constans
,
E.
,
Lopez-Valdes
,
F. J.
,
Kent
,
R. W.
,
Tanji
,
H.
, and
Huguchi
,
K.
,
2009
, “
Comparison of Kinematic Responses of the Head and Spine for Children and Adults in Low-Speed Frontal Sled Tests
,”
53rd Stapp Car Crash Conference Proceedings
, Vol.
53
, Savannah, GA, Nov. 2–4, pp.
329
372
.https://pubmed.ncbi.nlm.nih.gov/20058560/
29.
Vezin
,
P.
,
Bruyère
,
K.
, and
Bermond
,
F.
,
2001
, “
Comparison of Head and Thorax Cadaver and Hybrid III Responses to a Frontal Sled Deceleration for the Validation of a Car Occupant Mathematical Model
,”
17th ESV Conference
, No. 114,
Amsterdam, The Netherlands
, June 4–7,
Paper No. 2001-06-0035
.https://www.sae.org/publications/technical-papers/content/2001-06-0035/
30.
Khor
,
F.
,
Cronin
,
D. S.
, and
Van Toen
,
C.
,
2017
, “
Lower Cervical Spine Hard Tissue Injury Prediction in Axial Compression
,”
International Research Council on Biomechanics of Injury (IRCOBI)
,
Antwerp, Belgium
, Sept. 15–17,
Paper No. IRC-17-80
.http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/80.pdf
31.
Dibb
,
A. T.
,
Nightingale
,
R. W.
,
Luck
,
J. F.
,
Chancey
,
V. C.
,
Fronheiser
,
L. E.
, and
Myers
,
B. S.
,
2009
, “
Tension and Combined Tension-Extension Structural Response and Tolerance Properties of the Human Male Ligamentous Cervical Spine
,”
ASME J. Biomech. Eng.
,
131
(
8
), p.
081008
.10.1115/1.3127257
32.
Ivancic
,
P. C.
,
Panjabi
,
M. M.
,
Tominaga
,
Y.
, and
Malcolmson
,
G. F.
,
2006
, “
Predicting Multiplanar Cervical Spine Injury Due to Head-Turned Rear Impacts Using IV-NIC
,”
Traffic Injury Prev.
,
7
(
3
), pp.
264
275
.10.1080/15389580500488499
33.
Ivancic
,
P. C.
,
Pearson
,
A. M.
,
Panjabi
,
M. M.
, and
Ito
,
S.
,
2004
, “
Injury of the Anterior Longitudinal Ligament During Whiplash Simulation
,”
Eur. Spine J.
,
13
(
1
), pp.
61
68
.10.1007/s00586-003-0590-3
34.
Panjabi
,
M. M.
,
Ito
,
S.
,
Pearson
,
A. M.
, and
Ivancic
,
P. C.
,
2004
, “
Injury Mechanisms of the Cervical Intervertebral Disc During Simulated Whiplash
,”
Spine
,
29
(
11
), pp.
1217
1225
.10.1097/00007632-200406010-00011
35.
Panjabi
,
M. M.
,
Pearson
,
A. M.
,
Ito
,
S.
,
Ivancic
,
P. C.
,
Gimenez
,
S. E.
, and
Tominaga
,
Y.
,
2004
, “
Cervical Spine Ligament Injury During Simulated Frontal Impact
,”
Spine
,
29
(
21
), pp.
2395
2403
.10.1097/01.brs.0000143173.92241.ab
36.
Pearson
,
A. M.
,
Ivancic
,
P. C.
,
Ito
,
S.
, and
Panjabi
,
M. M.
,
2004
, “
Facet Joint Kinematics and Injury Mechanisms During Simulated Whiplash
,”
Spine
,
29
(
4
), pp.
390
397
.10.1097/01.BRS.0000090836.50508.F7
37.
Ito
,
S.
,
Ivancic
,
P. C.
,
Pearson
,
A. M.
,
Tominaga
,
Y.
,
Gimenez
,
S. E.
,
Rubin
,
W.
, and
Panjabi
,
M. M.
,
2005
, “
Cervical Intervertebral Disc Injury During Simulated Frontal Impact
,”
Eur. Spine J.
,
14
(
4
), pp.
356
365
.10.1007/s00586-004-0783-4
38.
Ewing
,
C. L.
, and
Thomas
,
D. J.
,
1972
, “
Human Head and Neck Response to Impact Accelerations
,”
Naval Aerospace Medical Research Laboratory
,
Pensacola, FL
, Report No. USAARL
73
1
.
39.
Wismans
,
J.
, and
Spenny
,
C. H.
,
1983
, “
Performance Requirements for Mechanical Necks in Lateral Flexion
,”
27th Stapp Car Crash Conference Proceedings
, Vol.
27
,
San Diego, CA
, Oct. 17–19, pp.
137
148
.10.4271/831613
40.
Seemann
,
M. R.
,
Lustick
,
L. S.
, and
Frisch
,
G. D.
,
1984
, “
Mechanism for Control of Head and Neck Dynamic Response
,”
28th Stapp Car Crash Conference Proceedings
, Vol.
28
,
Chicago, IL
, Nov. 6–7, pp.
207
222
. https://www.jstor.org/stable/44467202?seq=1
41.
Bosio
,
A. C.
, and
Bowman
,
B. M.
,
1986
, “
Simulation of Head-Neck Dynamic Response in –Gx and +Gy
,”
30th Stapp Car Crash Conference Proceedings
, Vol.
30
,
San Diego, CA
, Oct. 27–29, pp.
345
378
.10.4271/861895
42.
Wismans
,
J.
,
Philippens
,
M.
,
van Oorschot
,
E.
,
Kallieris
,
D.
, and
Mattern
,
R.
,
1987
, “
Comparison of Human Volunteer and Cadaver Head-Neck Response in Frontal Flexion
,”
31st Stapp Car Crash Conference Proceedings
, Vol.
31
,
New Orleans, LA
, Nov. 9–11, pp.
1
13
. https://www.jstor.org/stable/44472895?seq=1
43.
Spenny
,
C. H.
,
1987
, “
Performance Criteria for a Mechanical Head/Neck That Predicts Secondary Impact Force Levels During Frontal Flexion
,”
31st Stapp Car Crash Conference Proceedings
, Vol.
31
,
New Orleans, LA
, Nov. 9–11, pp.
55
65
.https://www.jstor.org/stable/44472898?seq=1
44.
Deng
,
B.
,
Mevlin
,
J. W.
, and
Rouhana
,
S. W.
,
1998
, “
Head-Neck Kinematics in Dynamic Forward Flexion
,”
42nd Stapp Car Crash Conference Proceedings
Vol.
42
,
Tempa, AZ
, Nov. 2–4, Paper No.
983156
.10.4271/983156
45.
National Highway Traffic Safety Administration
,
2017
, “Biomechanics Test Database,”
National Highway Traffic Safety Administration, Washington, DC,
accessed Aug. 2, 2020, https://www.nhtsa.gov/research-data/databases-and-software
46.
Sato
,
F.
,
Odani
,
M.
,
Miyazaki
,
Y.
,
Yamazaki
,
K.
,
Osth
,
J.
, and
Svensson
,
M.
,
2017
, “
Effects of Whole Spine Alignment Patterns on Neck Responses in Rear End Impact
,”
Traffic Injury Prev.
,
18
(
2
), pp.
199
206
.10.1080/15389588.2016.1227072
47.
Deng
,
B.
,
1999
, “
Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impact
,”
Ph.D. thesis
,
Wayne State University
,
Detroit, MI
.https://pubmed.ncbi.nlm.nih.gov/17458726/
48.
Barker
,
J. B.
,
Cronin
,
D. S.
, and
Nightingale
,
R. W.
,
2017
, “
Lower Cervical Spine Motion Segment Computational Model Validation: Kinematic and Kinetic Response for Quasi-Static and Dynamic Loading
,”
ASME J. Biomech. Eng.
,
139
(
6
), p. 061009.10.1115/1.4036464
49.
Lasswell
,
T. L.
,
Cronin
,
D. S.
,
Medley
,
J. B.
, and
Rasoulinejad
,
P.
,
2017
, “
Incorporating Ligament Laxity in a Finite Element Model for the Upper Cervical Spine
,”
Spine J.
,
17
(
11
), pp.
1755
1764
.10.1016/j.spinee.2017.06.040
50.
Shateri
,
H.
, and
Cronin
,
D. S.
,
2015
, “
Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model
,”
Traffic Injury Prev.
,
16
(
7
), pp.
698
708
.10.1080/15389588.2014.1003551
51.
Cronin
,
D. S.
,
Singh
,
D.
,
Barker
,
J.
, and
Fice
,
J.
,
2014
, “
Detailed Finite Element Cervical Spine Model Response Evaluation
,” WCB 2014, World Congress of Biomechanics, Boston, MA, July 6–11.
52.
Gayzik
,
F. S.
,
Moreno
,
D. M.
,
Geer
,
C. P.
,
Wuertzer
,
S. D.
,
Martin
,
R. S.
, and
Stitzel
,
J. D.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
53.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
Gill
,
A.
,
Jandir
,
G.
,
Singh
,
A.
, and
Yang
,
K. H.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty-Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.10.1115/1.4025101
54.
Walker
,
L. B.
,
Harris
,
E. H.
, and
Pontius
,
U. R.
,
1973
, “
Mass, Volume, Center of Mass, and Mass Moment of Inertia of Head and Head and Neck of Human Body
,”
17th Stapp Car Crash Conference Proceedings
, Vol.
17
, Coronado, CA, Nov. 17–19, pp.
525
537
.10.4271/730985
55.
De Santis
,
K. K.
,
Ebert
,
S. M.
,
Van Ee
,
C. A.
,
Flannagan
,
C. A. C.
,
Prasad
,
M.
,
Reed
,
M. P.
, and
Schneider
,
L. W.
,
2004
, “
Cervical Spine Geometry in the Automotive Seated Posture: Variations With Age, Stature and Gender
,”
48th Stapp Car Crash Conference Proceedings
, Vol.
48
, Nashville, TN, Nov. 1–3, pp.
301
330
.https://www.researchgate.net/publication/6572961_Cervical_spine_geometry_in_the_automotive_seated_posture_variations_with_age_stature_and_gender
56.
Schwartz
,
D.
,
Guleyupoglu
,
B.
,
Koya
,
B.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Development of a Computationally Efficient Full Human Body Finite Element Model
,”
Traffic Injury Prev.
,
16
(
Suppl. 1
), pp.
S49
S56
.10.1080/15389588.2015.1021418
57.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Response
,”
Enhanced Safety of Vehicles
,
Stuttgart
,
Germany
, June 15–18, Paper No.
09
0407
.https://trid.trb.org/view/1100058#:~:text=Objective%20Rating%20of%20Signals%20Using%20Test%20and%20Simulation%20Responses&text=The%20method%20combines%20two%20independent,defined%20or%20automatically%20calculated%20corridors
58.
Cesari
,
D.
,
Compigne
,
S.
,
Scherer
,
R.
,
Xu
,
L.
,
Takahasi
,
N.
,
Page
,
M.
,
Asakawa
,
K.
,
Hautmann
,
E.
,
Bortenschlager
,
K.
,
Sakurai
,
M.
, and
Harigae
,
T.
,
2001
, “
WorldSID Prototype Dummy Biomechanical Responses
,”
45th Stapp Car Crash Conference Proceedings
, Vol.
45
, San Antonio, TX, Nov. 15–17, pp.
285
318
.https://pubmed.ncbi.nlm.nih.gov/17458750/
59.
Camacho
,
D. L. A.
,
Nightingale
,
R. W.
,
Robinette
,
J. J.
,
Vanguri
,
S. K.
,
Coates
,
D. J.
, and
Myers
,
B. S.
,
1997
, “
Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact
,”
41st Stapp Car Crash Conference Proceedings
, Vol.
41
, Lake Buena Vista, FL, Nov. 13–14, pp.
473
486
.10.4271/973345
60.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.10.1016/j.jbiomech.2004.11.014
61.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(
6
), pp.
725
732
.10.1016/S0021-9290(02)00037-4
62.
Nightingale
,
R. W.
,
Carol Chancey
,
V.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
,
2007
, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
,
40
(
3
), pp.
535
542
.10.1016/j.jbiomech.2006.02.015
63.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
,
V. H.
,
1974
, “
The Elastic Modulus for Bone
,”
J. Biomech.
,
7
(
3
), pp.
271
275
.10.1016/0021-9290(74)90018-9
64.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), pp.
1231
1236
.10.1152/jappl.1966.21.4.1231
65.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.10.1146/annurev.bioeng.3.1.307
66.
Lindahl
,
O.
,
1976
, “
Mechanical Properties of Dried Defatted Spongy Bone
,”
Acta Orthop. Scand.
,
47
(
1
), pp.
11
19
.10.3109/17453677608998966
67.
Denozier
,
G.
, and
Ku
,
D. N.
,
2006
, “
Biomechanical Comparison Between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc
,”
J. Biomech.
,
39
(
4
), pp.
766
775
.10.1016/j.jbiomech.2004.07.039
68.
DiSilvestro
,
M. R.
, and
Suh
,
J. K. F.
,
2001
, “
A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression
,”
J. Biomech.
,
34
(
4
), pp.
519
525
.10.1016/S0021-9290(00)00224-4
69.
Yang
,
K. H.
, and
Kish
,
V. L.
,
1988
, “
Compressibility Measurement of Human Intervertebral Nucleus Pulposus
,”
J. Biomech.
,
21
(
10
), p.
865
.10.1016/0021-9290(88)90059-0
70.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.10.1002/jor.1100150605
71.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.10.1097/00007632-199406000-00002
72.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Annulus Fibrosus
,”
Spine
,
15
(
21
), pp.
452
461
.10.1097/00007632-199602150-00009
73.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus
,”
Biomech. Modell. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
74.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A. A.
, and
Andersson
,
G. B. J.
,
1988
, “
Load-Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.10.1016/0021-9290(88)90285-0
75.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.10.1097/00007632-200112150-00012
76.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2013
, “
Strain Rate Dependent Properties of Human Craniovertebral Ligaments
,”
J. Mech. Behav. Biomed. Mater.,
23
, pp.
71
79
.10.1016/j.jmbbm.2013.04.005
77.
Winters
,
J. M.
, and
Stark
,
L.
,
1985
, “
Analysis of Fundamental Human Movement Patterns Through the Use of in-Depth Antagonistic Muscle Models
,”
IEEE Trans. Biomed. Eng.
,
BME-32
(
10
), pp.
826
839
.10.1109/TBME.1985.325498
78.
Winters
,
J. M.
, and
Stark
,
L.
,
1988
, “
Estimated Mechanical Properties of Synergistic Muscles Involved in Movements of a Variety of Human Joints
,”
J. Biomech.
,
21
(
12
), pp.
1027
1041
.10.1016/0021-9290(88)90249-7
79.
Winters
,
J. M.
, and
Woo
,
S. L. Y.
,
1990
,
Multiple Muscle Systems: Biomechanics and Movement Organization
,
Springer-Verlag
,
New York
.
80.
Winters
,
J. M.
,
1995
, “
How Detailed Should Muscle Models Be to Understand Multi-Joint Movement Coordination?
,”
Human Movement Sci.
,
14
(
4–5
), pp.
401
442
.10.1016/0167-9457(95)00023-6
81.
Knaub
,
K.
, and
Myers
,
B. S.
,
1998
, “
Cervical Spine Muscle
,” NHTSA, Washington, DC, Report No. 98-3588-133.
82.
Brault
,
J. R.
,
Siegmund
,
G. P.
, and
Wheeler
,
J. B.
,
2000
, “
Cervical Muscle Response During Whiplash: Evidence of a Lengthening Muscle Contraction
,”
Clin. Biomech.
,
15
(
6
), pp.
426
435
.10.1016/S0268-0033(99)00097-2
83.
Siegmund
,
G. P.
,
Sanderson
,
D. J.
,
Myers
,
B. S.
, and
Inglis
,
J. T.
,
2003a
, “
Rapid Neck Muscle Adaptation Alters the Head Kinematics of Aware and Unaware Subjects Undergoing Multiple Whiplash-Like Perturbations
,”
J. Biomech.
,
36
(
4
), pp.
473
482
.10.1016/S0021-9290(02)00458-X
84.
Siegmund
,
G. P.
,
Sanderson
,
D. J.
,
Myers
,
B. S.
, and
Inglis
,
J. T.
,
2003b
, “
Awareness Affects the Response of Human Subjects Exposed to a Single Whiplash-Like Perturbation
,”
Spine
,
28
(
7
), pp.
671
679
.10.1097/01.BRS.0000051911.45505.D3
85.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Ellis Horwood
,
Chichester, UK
.
86.
Davis
,
J.
,
Kaufman
,
K. R.
, and
Lieber
,
R. L.
,
2003
, “
Correlation Between Active and Passive Isometric Force and Intramuscular Pressure in the Isolated Rabbit Tibialis Anterior Muscle
,”
J. Biomech.
,
36
(
4
), pp.
505
512
.10.1016/S0021-9290(02)00430-X
87.
Hedenstierna
,
S.
,
Halldin
,
P.
, and
Brolin
,
J.
,
2008
, “
Evaluation of a Combination of Continuum and Truss Finite Elements in a Model of Passive and Active Muscle Tissue
,”
Comput. Methods Biomech. Biomed. Eng.
,
11
(
6
), pp.
627
639
.10.1080/17474230802312516
88.
Hallquist
,
J. O.
,
2016
, “
LS-DYNA Keyword Users' Manual Volume 2 Version R8.0
,”
Livermore Software Technology
,
Livermore, CA
.
89.
Dubois
,
P. A.
,
2003
, “
A Simplified Approach to the Simulation of Rubber-Like Materials Under Dynamic Loading
,”
Fourth European LS-DYNA Users Conference
, Ulm, Germany, May 22–23, pp. D-I 31–D-I 46.https://www.dynalook.com/conferences/european-conf-2003/a-simplified-approach-to-the-simulation-of-rubber.pdf
90.
Yamada
,
H.
,
1970
,
Strength of Biological Materials
,
The Williams and Wilkins Company
,
Baltimore, MD
.
91.
Ivancic
,
P. C.
,
Panjabi
,
M. M.
,
Ito
,
S.
,
Cripton
,
P. A.
, and
Wang
,
J. L.
,
2005
, “
Biofidelic Whole Cervical Spine Model With Muscle Force Replication for Whiplash Simulation
,”
Eur. Spine J.
,
14
(
4
), pp.
346
355
.10.1007/s00586-004-0758-5
92.
Panjabi
,
M. M.
,
Miura
,
T.
,
Cripton
,
P. A.
,
Wang
,
J.-L.
,
Nain
,
A. S.
, and
DuBois
,
C.
,
2001
, “
Development of a System for In Vitro Neck Muscle Force Replication in Whole Cervical Spine Experiments
,”
Spine
,
26
(
20
), pp.
2214
2219
.10.1097/00007632-200110150-00012
93.
Ewing
,
C. L.
, and
Thomas
,
D. J.
,
1973
, “
Torque Versus Angular Displacement Response of Human Head to –Gx Impact Acceleration
,”
17th Stapp Car Crash Conference Proceedings
, Vol.
17
, Coronado, CA, Nov. 17–19, pp.
309
342
.10.4271/730976
94.
Reed
,
M. P.
,
Manary
,
M. A.
,
Flannagan
,
C. A. C.
, and
Schneider
,
L. W.
,
2002
, “
A Statistical Method for Predicting Automobile Driving Posture
,”
Hum. Factors
,
44
(
4
), pp.
557
568
.10.1518/0018720024496917
95.
Schneider
,
L. W.
,
Robbins
,
D. H.
,
Pflug
,
M. A.
, and
Snyder
,
R. G.
,
1983
, “
Development of Anthropometrically Based Design Specifications for an Advanced Adult Anthropometric Dummy Family
,” University of Michigan, Ann Arbor, MI, Vol. 1, Report No.
UMTRI-83-53-1
.http://mreed.umtri.umich.edu/mreed/downloads/anthro/amvo/AMVOvol1.pdf
96.
Gilad
,
I.
, and
Nissan
,
M.
,
1986
, “
A Study of Vertebra and Disc Geometric Relations of the Human Cervical and Lumbar Spine
,”
Spine
,
11
(
2
), pp.
154
157
.10.1097/00007632-198603000-00010
97.
Lu
,
J.
,
Ebraheim
,
N. A.
,
Yang
,
H.
,
Rollins
,
J.
, and
Yeasting
,
R. A.
,
1999
, “
Anatomic Bases for Anterior Spinal Surgery: Surgical Anatomy of the Cervical Vertebral Body and Disc Space
,”
Surg. Radiol. Anat.
,
21
(
S4
), pp.
235
239
.10.1007/BF01631392
98.
Gilad
,
I.
, and
Nissan
,
M.
,
1985
, “
Sagittal Evaluation of Elemental Geometrical Dimensions of Human Vertebrae
,”
J. Anat.
,
143
, pp.
115
120
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166429/
99.
Panjabi
,
M. M.
,
Oxland
,
T.
,
Takata
,
K.
,
Goel
,
V.
,
Duranceau
,
J.
, and
Krag
,
M.
,
1993
, “
Articular Facets of the Human Spine: Quantitative Three-Dimensional Anatomy
,”
Spine
,
18
(
10
), pp.
1298
1310
.10.1097/00007632-199308000-00009
100.
ASME
,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,”
American National Standard. The American Society of Mechanical Engineers
,
New York
,
Standard No. ASME V&V 10–2006
.https://www.asme.org/codes-standards/find-codes-standards/v-v-10-guide-verification-validation-computational-solid-mechanics
101.
Gepner
,
B. D.
,
Joodaki
,
H.
,
Sun
,
Z.
,
Jayathirtha
,
M.
,
Kim
,
T.
,
Forman
,
J. L.
, and
Kerrigan
,
J. R.
,
2018
, “Performance of Obese GHBMC Models in the Sled and Belt Pull Test Conditions,”
International Research Council on Biomechanics of Injury
(
IRCOBI
),
Athens, Greece, Sept. 12–14
. http://www.ircobi.org/wordpress/downloads/irc18/pdf-files/60.pdf
102.
Vavalle
,
N. A.
,
Davis
,
M. L.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2015
, “
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts
,”
Ann. Biomed. Eng.
,
43
(
9
), pp.
2163
2174
.10.1007/s10439-015-1286-7
103.
Singh
,
D.
, and
Cronin
,
D. S.
,
2017
, “
An Investigation of Dimensional Scaling Using Cervical Spine Motion Segment Finite Element Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
11
), p.
e2872
.10.1002/cnm.2872
104.
International Organization for Standardization, ISO
,
1999
, “
Road Vehicles—Anthropomorphic Side Impact Dummy—Lateral Impact Response Requirements to Assess the Biofidelity of the Dummy
,” ISO, Geneva, Switzerland, Report No.
ISO/TR 9790: 1999
.https://www.iso.org/standard/29828.html
105.
Dibb
,
A. T.
,
Cox
,
C. A.
,
Nightingale
,
R. W.
,
Luck
,
J. F.
,
Cutcliffe
,
H. C.
,
Myers
,
B. S.
,
Arbogast
,
K. B.
,
Seacrist
,
T.
, and
Bass
,
C. R.
,
2013
, “
Importance of Muscle Activations for Biofidelic Pediatric Neck Response in Computational Models
,”
Traffic Injury Prev.
,
14
(
Suppl. 1
), pp.
S116
S127
.10.1080/15389588.2013.806795
106.
Brolin
,
K.
,
Halldin
,
P.
, and
Leijonhufvud
,
I.
,
2005
, “
The Effect of Muscle Activation on Neck Responses
,”
Traffic Injury Prev.
,
6
(
1
), pp.
67
76
.10.1080/15389580590903203
107.
Decker
,
W.
,
Koya
,
B.
,
Davis
,
M. L.
, and
Gayzik
,
F. S.
,
2017
, “
Modular Use of Human Body Models of Varying Levels of Complexity: Validation of Head Kinematics
,”
Traffic Injury Prev.
,
18
(
Suppl. 1
), pp.
S155
160
.10.1080/15389588.2017.1315637
108.
Guleyupoglu
,
B.
,
Schap
,
J.
,
Kusano
,
K. D.
, and
Gayzik
,
F. S.
,
2017
, “
The Effect of Precrash Velocity Reduction on Occupant Response Using a Finite Element Model
,”
Traffic Injury Prev.
,
18
(
5
), pp.
508
514
.10.1080/15389588.2016.1269896
109.
Larsson
,
E.
,
Iraeus
,
J.
,
Fice
,
J.
,
Pipkorn
,
B.
,
Jakobsson
,
L.
,
Brynskog
,
E.
,
Brolin
,
K.
, and
Davidsson
,
J.
,
2019
, “
Active Human Body Model Predictions Compared to Volunteer Response in Experiments With Braking, Lane Change, and Combined Manoeuvres
,”
International Research Council on Biomechanics of Injury (IROCBI 2019)
,
Florence, Italy
, Sept. 11–13,
Paper No. IRC-19-50
.https://research.chalmers.se/en/publication/517685
You do not currently have access to this content.