Abstract

Research studies to understand the biomechanics of manual wheelchair propulsion often incorporate experimental data and mathematical models. This project aimed to advance this field of study by developing a two-dimensional (2D) model to generate first of its kind forward dynamic fully predictive computer simulations of a wheelchair basketball athlete on a stationary ergometer. Subject-specific parameters and torque generator functions were implemented in the model from dual X-ray absorptiometry and human dynamometer measurements. A direct collocation optimization method was used in a wheelchair propulsion model for the first time to replicate the human muscle recruitment strategy. Simulations were generated for varying time constraints and seat positions. Similar magnitudes of kinematic and kinetic data were observed between simulation and experimental data of a first push. Furthermore, seat heights inferior to the neutral position were found to produce similar joint torques to those reported in previous studies. An anterior seat placement produced the quickest push time with the least amount of shoulder torque required. The work completed in this project demonstrates that fully predictive simulations of wheelchair propulsion have the potential of varying simulation parameters to draw meaningful conclusions.

References

1.
Smith
,
E. M.
,
Giesbrecht
,
E. M.
,
Mortenson
,
W. B.
, and
Miller
,
W. C.
,
2016
, “
Prevalence of Wheelchair and Scooter Use Among Community-Swelling Canadians
,”
Phys. Ther.
,
96
(
8
), pp.
1135
1142
.10.2522/ptj.20150574
2.
Mason
,
B. S.
,
Van Der Woude
,
L. H. V.
, and
Goosey-Tolfrey
,
V. L.
,
2013
, “
The Ergonomics of Wheelchair Configuration for Optimal Performance in the Wheelchair Court Sports
,”
Sport. Med.
,
43
(
1
), pp.
23
38
.10.1007/s40279-012-0005-x
3.
Cerquiglini
,
S.
,
Figura
,
F.
,
Marchetti
,
M.
, and
Ricci
,
B.
,
1981
, “
Biomechanics of Wheelchair Propulsion
,”
Proceedings of Seventh International Congress of Biomechanics
, Vol.
3A
, University Park Press, Baltimore, MD, pp.
410
419
.
4.
Asato
,
K. T.
,
Cooper
,
R. A.
,
Robertson
,
R. N.
, and
Ster
,
J.
,
1993
, “
SMART Wheels: Development and Testing of a System for Measuring Manual Wheelchair Propulsion Dynamics
,”
IEEE Trans. Biomed. Eng.
,
40
(
12
), pp.
1320
1324
.10.1109/10.250587
5.
Wu
,
H. W.
,
Berglund
,
L. J.
,
Su
,
F. C.
,
Yu
,
B.
,
Westreich
,
A.
,
Kim
,
K. J.
, and
An
,
K. N.
,
1998
, “
An Instrumented Wheel for Kinetic Analysis of Wheelchair Propulsion
,”
ASME J. Biomech. Eng.
,
120
(
4
), pp.
533
535
.10.1115/1.2798024
6.
Richter
,
W. M.
,
2001
, “
The Effect of Seat Position on Manual Wheelchair Propulsion Biomechanics: A Quasi-Static Model-Based Approach
,”
Med. Eng. Phys.
,
23
(
10
), pp.
707
712
.10.1016/S1350-4533(01)00074-1
7.
Leary
,
M.
,
Gruijters
,
J.
,
Mazur
,
M.
,
Subic
,
A.
,
Burton
,
M.
, and
Fuss
,
F. K.
,
2012
, “
A Fundamental Model of Quasi-Static Wheelchair Biomechanics
,”
Med. Eng. Phys.
,
34
(
9
), pp.
1278
1286
.10.1016/j.medengphy.2011.12.018
8.
Desroches
,
G.
,
Aissaoui
,
R.
, and
Bourbonnais
,
D.
,
2006
, “
Effect of System Tilt and Seat-to-Backrest Angles on Load Sustained by Shoulder During Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
,
43
(
7
), pp.
871
882
.10.1682/JRRD.2005.12.0178
9.
Munaretto
,
J. M.
,
McNitt-Gray
,
J. L.
,
Flashner
,
H.
, and
Requejo
,
P. S.
,
2013
, “
Reconfiguration of the Upper Extremity Relative to the Pushrim Affects Load Distribution During Wheelchair Propulsion
,”
Med. Eng. Phys.
,
35
(
8
), pp.
1141
1149
.10.1016/j.medengphy.2012.12.002
10.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
381
390
.10.1115/1.1392310
11.
Norman-Gerum
,
V.
, and
Mcphee
,
J.
,
2018
, “
Constrained Dynamic Optimization of Sit-to-Stand Motion Driven by Bezier Curves
,”
ASME J. Biomech. Eng.
,
140
(
12
), p.
121011
.10.1115/1.4041527
12.
Neptune
,
R. R.
, and
Hull
,
M. L.
,
1998
, “
Evaluation of Performance Criteria for Simulation of Submaximal Steady-State Cycling Using a Forward Dynamic Model
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
334
341
.10.1115/1.2797999
13.
MacKenzie
,
S. J.
, and
Sprigings
,
E. J.
,
2009
, “
A Three-Dimensional Forward Dynamics Model of the Golf Swing
,”
Sport. Eng.
,
11
(
4
), pp.
165
175
.10.1007/s12283-009-0020-9
14.
Balzerson
,
D.
,
Banerjee
,
J.
, and
McPhee
,
J.
,
2016
, “
A Three-Dimensional Forward Dynamic Model of the Golf Swing Optimized for Ball Carry Distance
,”
Sport. Eng.
,
19
(
4
), pp.
237
250
.10.1007/s12283-016-0197-7
15.
McNally
,
W.
, and
McPhee
,
J.
,
2018
, “
Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model
,”
MDPI Proceedings of 12th Conference of the International Sports Engineering Association
, Vol.
2
, Brisbane, Australia, Mar. 26–28.10.3390/proceedings2060243
16.
Jansen
,
C.
, and
McPhee
,
J.
,
2018
, “
Predictive Dynamic Simulation of Seated Start-Up Cycling Using Olympic Cyclist and Bicycle Models
,”
Proceedings
,
2
(
6
), p.
220
.10.3390/proceedings2060220
17.
Rankin
,
J. W.
,
Kwarciak
,
A. M.
,
Mark Richter
,
W.
, and
Neptune
,
R. R.
,
2010
, “
The Influence of Altering Push Force Effectiveness on Upper Extremity Demand During Wheelchair Propulsion
,”
J. Biomech.
,
43
(
14
), pp.
2771
2779
.10.1016/j.jbiomech.2010.06.020
18.
Rankin
,
J. W.
,
Richter
,
W. M.
, and
Neptune
,
R. R.
,
2011
, “
Individual Muscle Contributions to Push and Recovery Subtasks During Wheelchair Propulsion
,”
J. Biomech.
,
44
(
7
), pp.
1246
1252
.10.1016/j.jbiomech.2011.02.073
19.
Slowik
,
J. S.
, and
Neptune
,
R. R.
,
2013
, “
A Theoretical Analysis of the Influence of Wheelchair Seat Position on Upper Extremity Demand
,”
Clin. Biomech.
,
28
(
4
), pp.
378
385
.10.1016/j.clinbiomech.2013.03.004
20.
Morrow
,
M. M.
,
Rankin
,
J. W.
,
Neptune
,
R. R.
, and
Kaufman
,
K. R.
,
2014
, “
A Comparison of Static and Dynamic Optimization Muscle Force Predictions During Wheelchair Propulsion
,”
J. Biomech.
,
47
(
14
), pp.
3459
3465
.10.1016/j.jbiomech.2014.09.013
21.
Slowik
,
J. S.
,
Requejo
,
P. S.
,
Mulroy
,
S. J.
, and
Neptune
,
R. R.
,
2016
, “
The Influence of Wheelchair Propulsion Hand Pattern on Upper Extremity Muscle Power and Stress
,”
J. Biomech.
,
49
(
9
), pp.
1554
1561
.10.1016/j.jbiomech.2016.03.031
22.
Morrow
,
M. M. B.
,
Kaufman
,
K. R.
, and
An
,
K. N.
,
2010
, “
Shoulder Model Validation and Joint Contact Forces During Wheelchair Activities
,”
J. Biomech.
,
43
(
13
), pp.
2487
2492
.10.1016/j.jbiomech.2010.05.026
23.
Dubowsky
,
S. R.
,
Sisto
,
S. A.
, and
Langrana
,
N. A.
,
2009
, “
Comparison of Kinematics, Kinetics, and EMG Throughout Wheelchair Propulsion in Able-Bodied and Persons With Paraplegia: An Integrative Approach
,”
ASME J. Biomech. Eng.
,
131
(
2
), p.
021015
.10.1115/1.2900726
24.
Van der Slikke
,
R. M. A.
,
de Witte
,
A.
,
Berger
,
M. A. M.
,
Bregman
,
D. J. J.
, and
Veeger
,
D.
,
2018
, “
Wheelchair Mobility Performance Enhancement by Changing Wheelchair Properties: What is the Effect of Grip, Seat Height, and Mass?
,”
Int. J. Sports Physiol. Perform.
,
13
(
8
), pp.
1050
1058
.10.1123/ijspp.2017-0641
25.
Vanlandewijck
,
Y.
,
Theisen
,
D.
, and
Daly
,
D.
,
2001
, “
Wheelchair Propulsion Biomechanics: Implications for Wheelchair Sports
,”
Sport. Med.
,
31
(
5
), pp.
339
367
.10.2165/00007256-200131050-00005
26.
Neptune
,
R. R.
,
1999
, “
Optimization Algorithm Performance in Determining Optimal Controls in Human Movement Analyses
,”
ASME J. Biomech. Eng.
,
121
(
2
), pp.
249
252
.10.1115/1.2835111
27.
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Hull
,
D. G.
,
1992
, “
A Parameter Optimization Approach for the Optimal Control of Large-Scale Musculoskeletal Systems
,”
ASME J. Biomech. Eng.
,
114
(
4
), pp.
450
460
.10.1115/1.2894094
28.
Laschowski
,
B.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2018
, “
Optimization-Based Motor Control of a Paralympic Wheelchair Athlete
,”
Sport. Eng.
,
21
, pp.
207
215
.10.1007/s12283-018-0265-2
29.
Guo
,
L. Y.
,
Su
,
F. C.
,
Wu
,
H. W.
, and
An
,
K. N.
,
2003
, “
Mechanical Energy and Power Flow of the Upper Extremity in Manual Wheelchair Propulsion
,”
Clin. Biomech.
,
18
(
2
), pp.
106
114
.10.1016/S0268-0033(02)00177-8
30.
Guo
,
B.
,
Duan
,
S.
, and
Ghalambor
,
A.
,
2006
, “
Effect of Handrim Diameter on Manual Wheelchair Propulsion: Mechanical Energy and Power Flow Analysis
,”
SPE Prod. Oper.
,
21
(
1
), pp.
107
113
.10.1016/j.clinbiomech.2005.08.015
31.
Rodgers
,
M. M.
,
McQuade
,
K. J.
,
Rasch
,
E. K.
,
Keyser
,
R. E.
, and
Finley
,
M. A.
,
2003
, “
Upper-Limb Fatigue-Related Joint Power Shifts in Experienced Wheelchair Users and Nonwheelchair Users
,”
J. Rehabil. Res. Dev.
,
40
(
1
), p.
27
.10.1682/JRRD.2003.01.0027
32.
Fuss
,
F. K.
,
2009
, “
Influence of Mass on the Speed of Wheelchair Racing
,”
Sport. Eng.
,
12
(
1
), pp.
41
53
.10.1007/s12283-009-0027-2
33.
De Leva
,
P.
,
1996
, “
Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters
,”
J. Biomech.
,
29
(
9
), pp.
1223
1230
.10.1016/0021-9290(95)00178-6
34.
Ghannadi
,
B.
,
2017
,
Model-Based Control of Upper Extremity Human-Robot Rehabilitation Systems
,
University of Waterloo
,
Waterloo, ON, Canada
.
35.
Yeadon
,
M. R.
,
King
,
M. A.
, and
Wilson
,
C.
,
2006
, “
Modelling the Maximum Voluntary Joint Torque-Angular Velocity Relationship in Human Movement
,”
J. Biomech.
,
39
(
3
), pp.
476
482
.10.1016/j.jbiomech.2004.12.012
36.
Brown
,
C.
, and
McPhee
,
J.
,
2018
, “
Dynamics of the Golf Club-Grip Interaction
,”
MDPI Proceedings of 12th Conference of the International Sports Engineering Association
, Vol.
2
, Brisbane, Australia, Mar. 25–28.https://www.researchgate.net/publication/323151773_Dynamics_of_the_Golf_Club-Grip_Interaction
37.
Alexander
,
R. M.
,
1990
, “
Optimum Take-Off Techniques for High and Long Jumps
,”
Philos. Trans. R. Soc. B Biol. Sci.
,
329
(
1252
), pp.
3
10
.10.1098/rstb.1990.0144
38.
King
,
M. A.
,
Wilson
,
C.
, and
Yeadon
,
M. R.
,
2006
, “
Evaluation of a Torque Driven-Model of Jumping for Height
,”
J. Appl. Biomech.
,
22
(
4
), pp.
264
274
.10.1123/jab.22.4.264
39.
Forrester
,
S. E.
,
Yeadon
,
M. R.
,
King
,
M. A.
, and
Pain
,
M. T. G.
,
2011
, “
Comparing Different Approaches for Determining Joint Torque Parameters From Isovelocity Dynamometer Measurements
,”
J. Biomech.
,
44
(
5
), pp.
955
961
.10.1016/j.jbiomech.2010.11.024
40.
Garner
,
B. A.
, and
Pandy
,
M. G.
,
2001
, “
Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset
,”
Comput. Methods Biomech. Biomed. Eng.
,
4
(
2
), pp.
93
126
.10.1080/10255840008908000
41.
Yamaguchi
,
G. T.
,
2001
,
Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Anlaysis in Three Dimensions
,
Kluwer Academic Publishers
,
Norwell, MA
.
42.
Lemay
,
M. A.
, and
Crago
,
P. E.
,
1996
, “
A Dynamic Model for Simulating Movements of the Elbow, Forearm, and Wrist
,”
J. Biomech.
,
29
(
10
), pp.
1319
1330
.10.1016/0021-9290(96)00026-7
43.
Brown
,
P.
, and
McPhee
,
J.
,
2016
, “
A Continuous Velocity-Based Friction Model for Dynamics and Control With Physically Meaningful Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
054502
.10.1115/1.4033658
44.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
45.
Patterson
,
M.
, and
Rao
,
A.
,
2014
, “
GPOPS II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using Hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Softw.
,
41
(
1
), pp.
1
37
.10.1145/2558904
46.
Williams
,
C.
,
1992
,
Maximum Concentric, Eccentric, and Isometric Strength of Trunk Flexor and Extensor Muscles in Athletes
,
University of Alberta
,
Edmonton, AB, Canada
.
47.
Bastian
,
A. J.
,
Zackowski
,
K. M.
, and
Thach
,
W. T.
,
2000
, “
Cerebellar Ataxia: Torque Deficiency or Torque Mismatch Between Joints?
,”
J. Neurophysiol.
,
83
(
5
), pp.
3019
3030
.10.1152/jn.2000.83.5.3019
48.
Kentel
,
B. B.
,
King
,
M. A.
, and
Mitchell
,
S. R.
,
2011
, “
Evaluation of a Subject-Specific, Torque-Driven Computer Simulation Model of One-Handed Tennis Backhand Ground Strokes
,”
J. Appl. Biomech.
,
27
(
4
), pp.
345
354
.10.1123/jab.27.4.345
49.
Kulig
,
K.
,
Rao
,
S. S.
,
Mulroy
,
S. J.
,
Newsam
,
C. J.
,
Gronley
,
J. K.
,
Bontrager
,
E. L.
, and
Perry
,
J.
,
1998
, “
Shoulder Joint Kinetics During the Push Phase of Wheelchair Propulsion
,”
Clin. Orthop. Relat. Res.
,
354
(
234
), pp.
132
143
.10.1097/00003086-199809000-00016
50.
Veeger
,
H. E. J.
,
Van Der Woude
,
L. H. V.
, and
Rozendal
,
R. H.
,
1991
, “
Load on the Upper Extremity in Manual Wheelchair Propulsion
,”
J. EIectromyography Kinesiol.
,
I
(
4
), pp.
270
280
.10.1016/1050-6411(91)90014-V
51.
Rodgers
,
M. M.
,
Tummarakota
,
S.
, and
Lieh
,
J.
,
1998
, “
Three-Dimensional Dynamic Analysis of Wheelchair Propulsion
,”
J. Appl. Biomech.
,
14
(
1
), pp.
80
92
.10.1123/jab.14.1.80
52.
Stephens
,
C. L.
, and
Engsberg
,
J. R.
,
2010
, “
Comparison of Overground and Treadmill Propulsion Patterns of Manual Wheelchair Users With Tetraplegia
,”
Disabil. Rehabil. Assist. Technol.
,
5
(
6
), pp.
420
427
.10.3109/17483101003793420
53.
Mason
,
B.
,
Lenton
,
J.
,
Leicht
,
C.
, and
Goosey-Tolfrey
,
V.
,
2014
, “
A Physiological and Biomechanical Comparison of Over-Ground, Treadmill and Ergometer Wheelchair Propulsion
,”
J. Sports Sci.
,
32
(
1
), pp.
78
91
.10.1080/02640414.2013.807350
You do not currently have access to this content.