Abstract

In this work, a heavily calcified coronary artery model was reconstructed from optical coherence tomography (OCT) images to investigate the impact of calcification characteristics on stenting outcomes. The calcification was quantified at various cross sections in terms of angle, maximum thickness, and area. The stent deployment procedure, including the crimping, expansion, and recoil, was implemented. The influence of calcification characteristics on stent expansion, malapposition, and lesion mechanics was characterized. Results have shown that the minimal lumen area following stenting occurred at the cross section with the greatest calcification angle. The calcification angle constricted the stretchability of the lesion and thus resulted in a small lumen area. The maximum principal strain and von Mises stress distribution patterns in both the fibrotic tissue and artery were consistent with the calcification profiles. The radially projected region of the calcification tends to have less strain and stress. The peak strain and stress of the fibrotic tissue occurred near the interface with the calcification. It is also the region with a high risk of tissue dissection and strut malapposition. In addition, the superficial calcification with a large angle aggregated the malapposition at the middle of the calcification arc. These detailed mechanistic quantifications could be used to provide a fundamental understanding of the role of calcification in stent expansions, as well as to exploit their potential for enhanced pre- and post-stenting strategies.

References

1.
Teng
,
Z.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Feng
,
J.
,
Yuan
,
J.
,
Lu
,
Q.
,
Sutcliffe
,
M. P.
,
Brown
,
A. J.
,
Jing
,
Z.
, and
Gillard
,
J. H.
,
2014
, “
Material Properties of Components in Human Carotid Atherosclerotic Plaques: A Uniaxial Extension Study
,”
Acta Biomater.
,
10
(
12
), pp.
5055
5063
.10.1016/j.actbio.2014.09.001
2.
Mori
,
H.
,
Torii
,
S.
,
Kutyna
,
M.
,
Sakamoto
,
A.
,
Finn
,
A. V.
, and
Virmani
,
R.
,
2018
, “
Coronary Artery Calcification and Its Progression: What Does It Really Mean?
,”
JACC
,
11
(
1
), pp.
127
142
.10.1016/j.jcmg.2017.10.012
3.
Mulvihill
,
J.
,
Cunnane
,
E.
,
McHugh
,
S.
,
Kavanagh
,
E.
,
Walsh
,
S.
, and
Walsh
,
M.
,
2013
, “
Mechanical, Biological and Structural Characterization of In Vitro Ruptured Human Carotid Plaque Tissue
,”
Acta Biomater.
,
9
(
11
), pp.
9027
9035
.10.1016/j.actbio.2013.07.012
4.
Dong
,
P.
,
Bezerra
,
H. G.
,
Wilson
,
D. L.
, and
Gu
,
L.
,
2019
, “
Impact of Calcium Quantifications on Stent Expansions
,”
ASME J. Biomech. Eng.
,
141
(
2
), p.
021010
.10.1115/1.4042013
5.
Pregowski
,
J.
,
Jastrzebski
,
J.
,
Kepka
,
C.
,
Kruk
,
M.
,
Ciszewski
,
M.
,
Wolny
,
R.
,
Zalewska
,
J.
,
Chmielak
,
Z.
,
Karcz
,
M.
, and
Witkowski
,
A.
,
2013
, “
Relation Between Coronary Plaque Calcium Deposits as Described by Computed Tomography Coronary Angiography and Acute Results of Stent Deployment as Assessed by Intravascular Ultrasound
,” Postepy w Kardiologii Interwencyjnej (
Adv. Interventional Cardiol.
),
9
(
2
), pp.
115
120
.10.5114/pwki.2013.35444
6.
Kobayashi
,
Y.
,
Okura
,
H.
,
Kume
,
T.
,
Yamada
,
R.
,
Kobayashi
,
Y.
,
Fukuhara
,
K.
,
Koyama
,
T.
,
Nezuo
,
S.
,
Neishi
,
Y.
,
Hayashida
,
A.
,
Kawamoto
,
T.
, and
Yoshida
,
K.
,
2014
, “
Impact of Target Lesion Coronary Calcification on Stent Expansion
,”
Circ. J.
,
78
(
9
), pp.
2209
2214
.10.1253/circj.CJ-14-0108
7.
Rathod
,
K. S.
,
Hamshere
,
S. M.
,
Jones
,
D. A.
, and
Mathur
,
A.
,
2015
, “
Intravascular Ultrasound Versus Optical Coherence Tomography for Coronary Artery Imaging–Apples and Oranges
,”
Interventional Cardiol. Rev.
,
10
(
1
), pp.
8
15
.10.15420/icr.2015.10.1.8
8.
Kume
,
T.
,
Okura
,
H.
,
Kawamoto
,
T.
,
Yamada
,
R.
,
Miyamoto
,
Y.
,
Hayashida
,
A.
,
Watanabe
,
N.
,
Neishi
,
Y.
,
Sadahira
,
Y.
,
Akasaka
,
T.
, and
Yoshida
,
K.
,
2011
, “
Assessment of the Coronary Calcification by Optical Coherence Tomography
,”
EuroIntervention
,
6
(
6
), pp.
768
772
.10.4244/EIJV6I6A130
9.
Fujino
,
A.
,
Mintz
,
G. S.
,
Matsumura
,
M.
,
Lee
,
T.
,
Kim
,
S.-Y.
,
Hoshino
,
M.
,
Usui
,
E.
,
Yonetsu
,
T.
,
Haag
,
E. S.
,
Shlofmitz
,
R. A.
,
Kakuta
,
T.
, and
Maehara
,
A.
,
2018
, “
A New Optical Coherence Tomography-Based Calcium Scoring System to Predict Stent Underexpansion
,”
EuroIntervention
,
13
(
18
), pp.
e2182
e2189
.10.4244/EIJ-D-17-00962
10.
Matsuura
,
T.
,
Abe
,
T.
,
Onoda
,
M.
,
Ikarashi
,
D.
,
Sugimura
,
J.
,
Komaki
,
T.
,
Sasaki
,
N.
,
Takasawa
,
Y.
,
Kato
,
T.
,
Yoshioka
,
K.
,
Ehara
,
S.
, and
Obara
,
W.
,
2018
, “
Pelvic Artery Calcification Score Is a Marker of Vascular Calcification in Male Hemodialysis Patients
,”
Ther. Apheresis Dial.
,
22
(
5
), p.
509
.10.1111/1744-9987.12668
11.
Polonsky
,
T. S.
,
McClelland
,
R. L.
,
Jorgensen
,
N. W.
,
Bild
,
D. E.
,
Burke
,
G. L.
,
Guerci
,
A. D.
, and
Greenland
,
P.
,
2010
, “
Coronary Artery Calcium Score and Risk Classification for Coronary Heart Disease Prediction
,”
JAMA
,
303
(
16
), pp.
1610
1616
.10.1001/jama.2010.461
12.
Detrano
,
R.
,
Guerci
,
A. D.
,
Carr
,
J. J.
,
Bild
,
D. E.
,
Burke
,
G.
,
Folsom
,
A. R.
,
Liu
,
K.
,
Shea
,
S.
,
Szklo
,
M.
,
Bluemke
,
D. A.
,
O'Leary
,
D. H.
,
Tracy
,
R.
,
Watson
,
K.
,
Wong
,
N. D.
, and
Kronmal
,
R. A.
,
2008
, “
Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups
,”
New Engl. J. Med.
,
358
(
13
), pp.
1336
1345
.10.1056/NEJMoa072100
13.
Lee
,
M. S.
,
Yang
,
T.
,
Lasala
,
J.
, and
Cox
,
D.
,
2016
, “
Impact of Coronary Artery Calcification in Percutaneous Coronary Intervention With Paclitaxel-Eluting Stents: Two-Year Clinical Outcomes of Paclitaxel-Eluting Stents in Patients From the ARRIVE Program
,”
Catheterization Cardiovasc. Interventions
,
88
(
6
), pp.
891
897
.10.1002/ccd.26395
14.
Barrett
,
H.
,
Cunnane
,
E.
,
Hidayat
,
H.
,
Brien
,
J. O.
,
Kavanagh
,
E.
, and
Walsh
,
M.
,
2017
, “
Calcification Volume Reduces Stretch Capability and Predisposes Plaque to Rupture in an In Vitro Model of Carotid Artery Stenting
,”
Eur. J. Vasc. Endovascular Surg.
,
54
(
4
), pp.
431
438
.10.1016/j.ejvs.2017.07.022
15.
Maejima
,
N.
,
Hibi
,
K.
,
Kuji
,
S.
,
Matsushita
,
K.
,
Minamimoto
,
Y. M.
,
Akiyama
,
E.
,
Matsuzawa
,
Y.
,
Hashiba
,
K.
,
Iwahashi
,
N.
,
Tsukahara
,
K.
,
Kosuge
,
M.
,
Ebina
,
T.
,
Umemura
,
S.
, and
Kimura
,
K.
,
2016
, “
Relationship Between Thickness of Calcium and Crack Formation After Balloon Dilatation in Calcified Plaque Requiring Rotational Atherectomy: Serial Optical Coherence Tomography Study
,”
J. Am. Coll. Cardiol.
,
67
(
13
), p.
377
.10.1016/S0735-1097(16)30378-3
16.
de Waha
,
S.
,
Allali
,
A.
,
Büttner
,
H. J.
,
Toelg
,
R.
,
Geist
,
V.
,
Neumann
,
F. J.
,
Khattab
,
A. A.
,
Richardt
,
G.
, and
Abdel-Wahab
,
M.
,
2016
, “
Rotational Atherectomy Before Paclitaxel-Eluting Stent Implantation in Complex Calcified Coronary Lesions: Two-Year Clinical Outcome of the Randomized ROTAXUS Trial
,”
Catheterization Cardiovasc. Interventions
,
87
(
4
), pp.
691
700
.10.1002/ccd.26290
17.
Foin
,
N.
,
Lu
,
S.
,
Ng
,
J.
,
Bulluck
,
H.
,
Hausenloy
,
D. J.
,
Wong
,
P. E.
,
Virmani
,
R.
, and
Joner
,
M.
,
2017
, “
Stent Malapposition and the Risk of Stent Thrombosis: Mechanistic Insights From an In Vitro Model
,”
EuroIntervention
,
13
(
9
), pp.
e1096
e1098
.10.4244/EIJ-D-17-00381
18.
Gutiérrez-Chico
,
J. L.
,
Wykrzykowska
,
J.
,
Nüesch
,
E.
,
van Geuns
,
R. J.
,
Koch
,
K. T.
,
Koolen
,
J. J.
,
di Mario
,
C.
,
Windecker
,
S.
,
van Es
,
G.-A.
, and
Gobbens
,
P.
,
2012
, “
Vascular Tissue Reaction to Acute Malapposition in Human Coronary Arteries: Sequential Assessment With Optical Coherence Tomography
,”
Circ.: Cardiovasc. Interventions
,
5
(
1
), pp.
20
29
.10.1161/CIRCINTERVENTIONS.111.965301
19.
Lindsay
,
A. C.
,
Paulo
,
M.
,
Kadriye
,
K.
,
Tejeiro
,
R.
,
Alegría-Barrero
,
E.
,
Chan
,
P. H.
,
Foin
,
N.
,
Syrseloudis
,
D.
, and
Di Mario
,
C.
,
2013
, “
Predictors of Stent Strut Malapposition in Calcified Vessels Using Frequency-Domain Optical Coherence Tomography
,”
J. Invasive Cardiol.
,
25
(
9
), pp.
429
434
.https://www.invasivecardiology.com/articles/predictors-stent-strut-malapposition-calcified-vessels-using-frequency-domain-optical-coher
20.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Yamada
,
H.
, and
Razaghi
,
R.
,
2014
, “
A Nonlinear Finite Element Simulation of Balloon Expandable Stent for Assessment of Plaque Vulnerability Inside a Stenotic Artery
,”
Med. Biol. Eng. Comput.
,
52
(
7
), pp.
589
599
.10.1007/s11517-014-1163-9
21.
Morlacchi
,
S.
,
Pennati
,
G.
,
Petrini
,
L.
,
Dubini
,
G.
, and
Migliavacca
,
F.
,
2014
, “
Influence of Plaque Calcifications on Coronary Stent Fracture: A Numerical Fatigue Life Analysis Including Cardiac Wall Movement
,”
J. Biomech.
,
47
(
4
), pp.
899
907
.10.1016/j.jbiomech.2014.01.007
22.
Pericevic
,
I.
,
Lally
,
C.
,
Toner
,
D.
, and
Kelly
,
D. J.
,
2009
, “
The Influence of Plaque Composition on Underlying Arterial Wall Stress During Stent Expansion: The Case for Lesion-Specific Stents
,”
Med. Eng. Phys.
,
31
(
4
), pp.
428
433
.10.1016/j.medengphy.2008.11.005
23.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Finite Element Analysis of the Implantation of a Self-Expanding Stent: Impact of Lesion Calcification
,”
ASME J. Med. Devices
,
6
(
2
), p.
021001
.10.1115/1.4006357
24.
Chiastra
,
C.
,
Wu
,
W.
,
Dickerhoff
,
B.
,
Aleiou
,
A.
,
Dubini
,
G.
,
Otake
,
H.
,
Migliavacca
,
F.
, and
LaDisa
,
J. F.
, Jr
,
2016
, “
Computational Replication of the Patient-Specific Stenting Procedure for Coronary Artery Bifurcations: From OCT and CT Imaging to Structural and Hemodynamics Analyses
,”
J. Biomech.
,
49
(
11
), pp.
2102
2111
.10.1016/j.jbiomech.2015.11.024
25.
Mortier
,
P.
,
Wentzel
,
J. J.
,
De
,
G. S.
,
Chiastra
,
C.
,
Migliavacca
,
F.
,
De
,
M. B.
,
Louvard
,
Y.
, and
Dubini
,
G.
,
2015
, “
Patient-Specific Computer Modelling of Coronary Bifurcation Stenting: The John Doe Programme
,”
EuroIntervention
,
11
(
V
), pp.
V35
V39
.10.4244/EIJV11SVA8
26.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
On the Importance of Modeling Stent Procedure for Predicting Arterial Mechanics
,”
ASME J. Biomech. Eng.
,
134
(
12
), p.
121005
.10.1115/1.4023094
27.
Gastaldi
,
D.
,
Morlacchi
,
S.
,
Nichetti
,
R.
,
Capelli
,
C.
,
Dubini
,
G.
,
Petrini
,
L.
, and
Migliavacca
,
F.
,
2010
, “
Modelling of the Provisional Side-Branch Stenting Approach for the Treatment of Atherosclerotic Coronary Bifurcations: Effects of Stent Positioning
,”
Biomech. Model. Mechanobiol.
,
9
(
5
), pp.
551
561
.10.1007/s10237-010-0196-8
28.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2013
, “
Experimental Investigation of the Stent–Artery Interaction
,”
J. Med. Eng. Technol.
,
37
(
7
), pp.
463
469
.10.3109/03091902.2013.831491
29.
Dassault Systèmes SIMULIA Corp.
,
2009
, “
ABAQUS Theory Manual, 2009 Version
,”
Dassault Systèmes SIMULIA Corp
.,
Providence, RI
.
30.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), p.
671
.10.1038/nmeth.2089
31.
Adler
,
J.
, and
Parmryd
,
I.
,
2010
, “
Quantifying Colocalization by Correlation: The Pearson Correlation Coefficient Is Superior to the Mander's Overlap Coefficient
,”
Cytometry, Part A
,
77
(
8
), pp.
733
742
.10.1002/cyto.a.20896
32.
Fitzgerald
,
P. J.
,
Ports
,
T. A.
, and
Yock
,
P. G.
,
1992
, “
Contribution of Localized Calcium Deposits to Dissection After Angioplasty. An Observational Study Using Intravascular Ultrasound
,”
Circulation
,
86
(
1
), pp.
64
70
.10.1161/01.CIR.86.1.64
33.
Poon
,
E. K.
,
Barlis
,
P.
,
Moore
,
S.
,
Pan
,
W.-H.
,
Liu
,
Y.
,
Ye
,
Y.
,
Xue
,
Y.
,
Zhu
,
S. J.
, and
Ooi
,
A. S.
,
2014
, “
Numerical Investigations of the Haemodynamic Changes Associated With Stent Malapposition in an Idealised Coronary Artery
,”
J. Biomech.
,
47
(
12
), pp.
2843
2851
.10.1016/j.jbiomech.2014.07.030
34.
Jia
,
L.
,
Wang
,
L.
,
Wei
,
F.
,
Yu
,
H.
,
Dong
,
H.
,
Wang
,
B.
,
Lu
,
Z.
,
Sun
,
G.
,
Chen
,
H.
,
Meng
,
J.
,
Li
,
B.
,
Zhang
,
R.
,
Bi
,
X.
,
Wang
,
Z.
,
Pang
,
H.
, and
Jiang
,
A.
,
2015
, “
Effects of Wall Shear Stress in Venous Neointimal Hyperplasia of Arteriovenous Fistulae
,”
Nephrology
,
20
(
5
), pp.
335
342
.10.1111/nep.12394
35.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
36.
Wu
,
W.
,
Wang
,
W.-Q.
,
Yang
,
D.-Z.
, and
Qi
,
M.
,
2007
, “
Stent Expansion in Curved Vessel and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
,
40
(
11
), pp.
2580
2585
.10.1016/j.jbiomech.2006.11.009
37.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
071007
.10.1115/1.4007095
38.
Martin
,
D.
, and
Boyle
,
F.
,
2013
, “
Finite Element Analysis of Balloon-Expandable Coronary Stent Deployment: Influence of Angioplasty Balloon Configuration
,”
Int. J. Numer. Methods Biomed. Eng.
,
29
(
11
), pp.
1161
1175
.10.1002/cnm.2557
39.
Zahedmanesh
,
H.
,
Kelly
,
D. J.
, and
Lally
,
C.
,
2010
, “
Simulation of a Balloon Expandable Stent in a Realistic Coronary Artery—Determination of the Optimum Modelling Strategy
,”
J. Biomech.
,
43
(
11
), pp.
2126
2132
.10.1016/j.jbiomech.2010.03.050
40.
Tong
,
J.
,
Cheng
,
Y.
, and
Holzapfel
,
G. A.
,
2016
, “
Mechanical Assessment of Arterial Dissection in Health and Disease: Advancements and Challenges
,”
J. Biomech.
,
49
(
12
), pp.
2366
2373
.10.1016/j.jbiomech.2016.02.009
You do not currently have access to this content.