Abstract

Finite element (FE) method has been widely used for gaining insights into the mechanical response of brain tissue during impacts. In this study, a coupled Eulerian−Lagrangian (CEL) formulation is implemented in impact simulations of a head system to overcome the mesh distortion difficulties due to large deformation in the cerebrospinal fluid (CSF) region and provide a biofidelic model of the interaction between the brain and skull. The head system used in our FE model is constructed from the transverse section of the human brain, with CSF modeled by Eulerian elements. Spring connectors are applied to represent the pia-arachnoid connection between the brain and skull. Validations of the CEL formulation and the FE model are performed using the experimental results. The dynamic response of brain tissue under noncontact impacts and the brain regions susceptible to injury are evaluated based on the intracranial pressure (ICP), maximum principal strain (MPS), and von Mises stress. While tracking the critical MPS location on the brain, higher likelihood of contrecoup injury than coup injury is found when sudden brain−skull motion takes place. The accumulation effect of CSF in the ventricle system, under large relative brain−skull motion, is also identified. The FE results show that adding relative angular velocities, to the translational impact model, not only causes a diffuse high strain area, but also cause the temporal lobes to be susceptible to cerebral contusions since the protecting CSF is prone to be squeezed away at the temporal sites due to the head rotations.

References

1.
Faul, M., Wald, M. M., Xu, L., and Coronado, V. G., 2010, “Traumatic Brain Injury in the United States; Emergency Department Visits, Hospitalizations, and Deaths 2002–2006,” U.S. Department of Health and Human Services Center for Disease Control and Prevention.
2.
Maas
, A.
I. R
,
Stocchetti
,
N.
, and
Bullock
,
R.
,
2008
, “
Moderate and Severe Traumatic Brain Injury in Adults
,”
Lancet Neurol.
, 7(8), pp.
728
741
.10.1016/S1474-4422(08)70164-9
3.
Fung
,
Y.
,
Perrone
,
N.
, and
Anliker
,
M
,
1972
, “
Biomechanics, Its Foundations and Objectives
,”
Symposium on Biomechanics, Its Foundations and Objectives,
University of California, San Diego, Prentice-Hall, Upper Saddle River, NJ.
4.
McLean
,
A. J.
, and
Anderson
,
R. W. G.
,
1997
, “
Biomechanics of Closed Head Injury
,”
Head Inj.
, pp.
25
37
.
5.
Gennarelli
,
T. A.
,
Thibault
,
L. E.
,
Adams
,
J. H.
,
Graham
,
D. I.
,
Thompson
,
C. J.
, and
Marcincin
,
R. P.
,
1982
, “
Diffuse Axonal Injury and Traumatic Coma in the Primate
,”
Ann. Neurol.
, 12(6), pp.
564
574
.https://www.ncbi.nlm.nih.gov/pubmed/7159060
6.
Wang
,
H.-C.
,
Duan
,
Z.-X.
,
Wu
,
F.-F.
,
Xie
,
L.
,
Zhang
,
H.
, and
Ma
,
Y.-B.
,
2010
, “
A New Rat Model for Diffuse Axonal Injury Using a Combination of Linear Acceleration and Angular Acceleration
,”
J. Neurotrauma
,
27
(
4
), pp.
707
719
.10.1089/neu.2009.1071
7.
Li
,
X. Y.
, and
Feng
,
D. F.
,
2009
, “
Diffuse Axonal Injury: Novel Insights Into Detection and Treatment
,”
J. Clin. Neurosci.
, 16(5), pp.
614
619
.10.1016/j.jocn.2008.08.005
8.
Willinger
,
R.
,
Kang
,
H. S.
, and
Diaw
,
B.
,
1999
, “
Three-Dimensional Human Head Finite-Element Model Validation Against Two Experimental Impacts
,”
Ann. Biomed. Eng.
, 27, p. 403.10.1114/1.165
9.
Chafi
,
M. S.
,
Dirisala
,
V.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2009
, “
A Finite Element Method Parametric Study of the Dynamic Response of the Human Brain With Different Cerebrospinal Fluid Constitutive Properties
,”
Proc. Inst. Mech. Eng., Part H.
, 223(8), pp. 1003–1019.10.1243/09544119JEIM631
10.
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2010
, “
Biomechanical Assessment of Brain Dynamic Responses Due to Blast Pressure Waves
,”
Ann. Biomed. Eng.
, 38(2), pp. 490–504.10.1007/s10439-009-9813-z
11.
Yang
,
B.
,
Tse
,
K.-M.
,
Chen
,
N.
,
Tan
,
L.-B.
,
Zheng
,
Q.-Q.
,
Yang
,
H.-M.
,
Hu
,
M.
,
Pan
,
G.
, and
Lee
,
H.-P.
,
2014
, “
Development of a Finite Element Head Model for the Study of Impact Head Injury
,”
Biomed Res. Int.
,
2014
, p.
408278
.10.1155/2014/408278
12.
Yan
,
W.
, and
Pangestu
,
O. D.
,
2011
, “
A Modified Human Head Model for the Study of Impact Head Injury
,”
Comput. Methods Biomech. Biomed. Eng.
, 14(12), pp.
1049
1057
.10.1080/10255842.2010.506435
13.
Jin
,
J.-X.
,
Zhang
,
J.-Y.
,
Song
,
X.-W.
,
Hu
,
H.
,
Sun
,
X.-Y.
, and
Gao
,
Z.-H.
,
2015
, “
Effect of Cerebrospinal Fluid Modeled With Different Material Properties on a Human Finite Element Head Model
,”
J. Mech. Med. Biol.
,
15
(
3
), p.
1550027
.10.1142/S021951941550027X
14.
Zhou
,
Z.
,
Li
,
X.
, and
Kleiven
,
S.
,
2019
, “
Fluid–Structure Interaction Simulation of the Brain–Skull Interface for Acute Subdural Haematoma Prediction
,”
Biomech. Model. Mechanobiol.,
18(1), pp.
155
173
.10.1007/s10237-018-1074-z
15.
Zhou
,
Z.
,
Li
,
X.
, and
Kleiven
,
S.
,
2019
, “
Biomechanics of Acute Subdural Hematoma in the Elderly: A Fluid-Structure Interaction Study
,”
J. Neurotrauma.
, 36(13), pp. 2099–2108.10.1089/neu.2018.6143
16.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
, 14(3), pp. 227–253.10.1016/0021-9991(74)90051-5
17.
Systèmes
,
D.
,
2017
, “
SIMULIA User Assistance 2017
,” Dassault Systèmes, Providence, RI.
18.
Toma
,
M.
, and
Nguyen
,
P. D. H.
,
2018
, “
Fluid–Structure Interaction Analysis of Cerebrospinal Fluid With a Comprehensive Head Model Subject to a Rapid Acceleration and Deceleration
,”
Brain Inj.
, 32(12), pp. 1576–1584.10.1080/02699052.2018.1502470
19.
Adami
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
, 231(21), pp. 7057–7075.10.1016/j.jcp.2012.05.005
20.
Shadloo
,
M. S.
,
Oger
,
G.
, and
Le Touzé
,
D.
,
2016
, “
Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges
,”
Comput. Fluids.
, 136, pp. 11–34.10.1016/j.compfluid.2016.05.029
21.
Noh
,
W. F.
,
1964
, “
CEL: A Time-Dependent, Two Space Dimensional, Coupled Eulerian–Lagrange Code
,” No. NCRL_7463, Lawrence Radiation Laboratory, University of California, Livermore, CA.
22.
Joldes
,
G. R.
,
Wittek
,
A.
, and
Miller
,
K.
,
2009
, “
Suite of Finite Element Algorithms for Accurate Computation of Soft Tissue Deformation for Surgical Simulation
,”
Med. Image Anal.
, 13(6), pp.
912
919
.10.1016/j.media.2008.12.001
23.
Barton
,
R. T.
,
1982
, “
Development of a Multimaterial, Two-Dimensional, Arbitrary Lagrangian-Eulerian Mesh Computer Program
,” Lawrence Livermore National Laboratory, Livermore, CA.
24.
Benson
,
D. J.
,
1992
, “
Computational Methods in Lagrangian and Eulerian Hydrocodes
,”
Comput. Methods Appl. Mech. Eng.
, 99(2–3), pp. 253–394.10.1016/0045-7825(92)90042-I
25.
Qiu
,
G.
,
Henke
,
S.
, and
Grabe
,
J.
,
2011
, “
Application of a Coupled Eulerian-Lagrangian Approach on Geomechanical Problems Involving Large Deformations
,”
Comput. Geotech.
, 38(1), pp. 30–39.10.1016/j.compgeo.2010.09.002
26.
Ducobu
,
F.
,
Rivière-Lorphèvre
,
E.
, and
Filippi
,
E.
,
2016
, “
Application of the Coupled Eulerian-Lagrangian (CEL) Method to the Modeling of Orthogonal Cutting
,”
Eur. J. Mech. A.
, 59, pp. 58–66.10.1016/j.euromechso1.2016.03.008
27.
Noh
,
W. F.
, and
Woodward
,
P.
,
1976
, “
SLIC (Simple Line Interface Calculation)
,”
Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics
, Twente University, Enschede, The Netherlands, June 28–July 2, pp.
330
340
.
28.
Beavers
,
T. J.
,
2018
, “
A Surrogate Head System for Blunt Impact Experiments
,” Thesis, Iowa State University, Iowa City, Iowa.
29.
Weickenmeier
,
J.
,
de Rooij
,
R.
,
Budday
,
S.
,
Steinmann
,
P.
,
Ovaert
,
T. C.
, and
Kuhl
,
E.
,
2016
, “
Brain Stiffness Increases With Myelin Content
,”
Acta Biomater.
, 42, pp. 265–272.10.1016/j.actbio.2016.07.040
30.
Budday
,
S.
,
Nay
,
R.
,
de Rooij
,
R.
,
Steinmann
,
P.
,
Wyrobek
,
T.
,
Ovaert
,
T. C.
, and
Kuhl
,
E.
,
2015
, “
Mechanical Properties of Gray and White Matter Brain Tissue by Indentation
,”
J. Mech. Behav. Biomed. Mater.
, 46, pp. 318-–330.10.1016/j.jmbbm.2015.02.024
31.
Williams
,
T. H.
,
Gluhbegovic
,
N.
, and
Jew
,
J. Y.
,
1999
,
The Human Brain: Dissections of the Real Brain
,
University of Iowa
, Iowa City, IA.
32.
Gur
,
R. C.
,
Turetsky
,
B. I.
,
Matsui
,
M.
,
Yan
,
M.
,
Bilker
,
W.
,
Hughett
,
P.
, and
Gur
,
R. E.
,
1999
, “
Sex Differences in Brain Gray and White Matter in Healthy Young Adults: Correlations With Cognitive Performance
,”
J. Neurosci.
,
19
(
10
), p.
4065
.10.1523/JNEUROSCI.19-10-04065.1999
33.
Monson
,
K. L.
,
Goldsmith
,
W.
,
Barbaro
,
N. M.
, and
Manley
,
G. T.
,
2005
, “
Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels
,”
J. Biomech.
, 38(4), pp. 737–744.https://www.ncbi.nlm.nih.gov/pubmed/15713294
34.
Coats
,
B.
,
Eucker
,
S. A.
,
Sullivan
,
S.
, and
Margulies
,
S. S.
,
2012
, “
Finite Element Model Predictions of Intracranial Hemorrhage From Non-Impact, Rapid Head Rotations in the Piglet
,”
Int. J. Dev. Neurosci.
, 30(3), pp.
191
200
.10.1016/j.ijdevneu.2011.12.009
35.
Pervin
,
F.
, and
Chen
,
W. W.
,
2009
, “
Dynamic Mechanical Response of Bovine Gray Matter and White Matter Brain Tissues Under Compression
,”
J. Biomech.
, 42(6), pp. 731–735.10.1016/j.jbiomech.2009.01.023
36.
Kleiven
,
S.
, and
Hardy
,
W. N.
,
2002
, “
Correlation of an FE Model of the Human Head With Local Brain Motion–Consequences for Injury Prediction
,”
Stapp Car Crash J.
, 46, pp. 123–144. https://www.ncbi.nlm.nih.gov/pubmed/17096222
37.
Hardy
,
W. N.
,
Mason
,
M. J.
,
Foster
,
C. D.
,
Shah
,
C. S.
,
Kopacz
,
J. M.
,
Yang
,
K. H.
,
King
,
A. I.
,
Bishop
,
J.
,
Bey
,
M.
,
Anderst
,
W.
, and
Tashman
,
S.
,
2007
, “
A Study of the Response of the Human Cadaver Head to Impact
,”
Stapp Car Crash J.
,
51
, p.
17
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474809/
38.
Ruan
,
J. S.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
1993
, Finite Element Modeling of Direct Head Impact,”
SAE
Paper No. 933114.10.4271/933114
39.
Mendis
,
K. K.
,
Stalnaker
,
R. L.
, and
Advani
,
S. H.
,
1995
, “
A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue
,”
ASME J. Biomech. Eng.
, 117(3), pp. 279–285.10.1115/1.2794182
40.
Zhang
,
L.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2004
, “
A Proposed Injury Threshold for Mild Traumatic Brain Injury
,”
ASME J. Biomech. Eng.
, 126(2), pp. 226–236.10.1115/1.1691446
41.
Deck
,
C.
, and
Willinger
,
R.
,
2008
, “
Improved Head Injury Criteria Based on Head FE Model
,”
Int. J. Crashworthiness.
, 13(6), pp. 667–678.10.1080/13588260802411523
42.
Morrison
,
B.
,
Cater
,
H. L.
,
Wang
,
C. C.-B.
,
Thomas
,
F. C.
,
Hung
,
C. T.
,
Ateshian
,
G. A.
, and
Sundstrom
,
L. E.
,
2003
, “
A Tissue Level Tolerance Criterion for Living Brain Developed With an In Vitro Model of Traumatic Mechanical Loading
,”
Stapp Car Crash J.
, 47, pp.
93
105
.
43.
Willinger
,
R.
, and
Baumgartner
,
D.
,
2003
, “
Human Head Tolerance Limits to Specific Injury Mechanisms
,”
Int. J. Crashworthiness.
, 8(6), pp. 605–617.10.1533/ijcr.2003.0264
44.
Anderson
,
R. W. G.
,
2000
, “
A Study on the Biomechanics of Axonal Injury
,” thesis, Mechanical Engineering.
45.
Lindgren
,
S.
, and
Rinder
,
L.
,
1966
, “
Experimental Studies in Head Injury
,”
Biophysik
,
3
(
2
), pp.
174
180
.10.1007/BF01191611
46.
Kleiven
,
S.
,
2007
, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
Stapp Car Crash J., 51, pp. 81–114.
47.
Poirier
,
M. P.
,
2003
, “
Concussions: Assessment, Management, and Recommendations for Return to Activity
,”
Clin. Pediatr. Emerg. Med.
, 4(3), pp. 179–185.10.1016/S1522-8401(03)00061-2
48.
Zhang
,
L.
,
Jackson
,
W. J.
, and
Bentil
,
S. A.
,
2019
, “
The Mechanical Behavior of Brain Surrogates Manufactured From Silicone Elastomers
,”
J. Mech. Behav. Biomed. Mater.
, 95, pp.
180
190
.10.1016/j.jmbbm.2019.04.005
You do not currently have access to this content.