Abstract

This study explores the optimal left ventricular assist device (LVAD) cannula outflow configuration in a patient-specific replica of the aorta. The volumetric velocity field is measured using phase-contrast magnetic resonance imaging (PC-MRI) under a physiologically relevant steady flow. The effect of the LVAD outflow graft insertion site and anastomosis angle on the transport of embolic particles to cranial vessels is studied by solving the particle equation of motion for spheres in the range of 0.1–1.0 mm using the measured three-dimensional (3D) velocity field. Results show that for a given aorta anatomy, it is possible to design the cannula graft location and terminal curvature so that the probability of embolic transport to the cranial vessels is significantly minimized. This is particularly important since the complex flow pattern in each cannula case affects the embolic trajectories differently, and hence the common assumption that particles distribute by the volumetric flow division does not hold.

References

1.
Sabashnikov
,
A.
,
Mohite
,
P. N.
,
Zych
,
B.
,
García
,
D.
,
Popov
,
A.-F.
,
Weymann
,
A.
,
Patil
,
N. P.
,
Hards
,
R.
,
Capoccia
,
M.
,
Wahlers
,
T.
,
De Robertis
,
F.
,
Bahrami
,
T.
,
Amrani
,
M.
,
Banner
,
N. R.
, and
Simon
,
A. R.
,
2014
, “
Outcomes and Predictors of Early Mortality After Continuous-Flow Left Ventricular Assist Device Implantation as a Bridge to Transplantation
,”
ASAIO J.
,
60
(
2
), pp.
162
169
.10.1097/MAT.0000000000000035
2.
Belval
,
T.
,
Hellums
,
J.
, and
Solis
,
R.
,
1984
, “
The Kinetics of Platelet Aggregation Induced by Fluid-Shearing Stress
,”
Microvasc. Res.
,
28
(
3
), pp.
279
288
.10.1016/0026-2862(84)90001-3
3.
Alemu
,
Y.
, and
Bluestein
,
D.
,
2007
, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.10.1111/j.1525-1594.2007.00446.x
4.
Schmid
,
C.
,
Jurmann
,
M.
,
Birnbaum
,
D.
,
Colombo
,
T.
,
Falk
,
V.
,
Feltrin
,
G.
,
Garatti
,
A.
,
Genoni
,
M.
,
Gerosa
,
G.
,
Göttel
,
P.
,
Gummert
,
J.
,
Halfmann
,
R.
,
Hammel
,
D.
,
Hennig
,
E.
,
Kaufmann
,
F.
,
Lanfranconi
,
M.
,
Meyns
,
B.
,
Mohr
,
F.
,
Müller
,
J.
,
Nikolov
,
D.
,
Rucinskas
,
K.
,
Scheld
,
H.-H.
,
Schmid
,
F.-X.
,
Schneider
,
M.
,
Sirvydis
,
V.
,
Tandler
,
R.
,
Vitali
,
E.
,
Vlasselaers
,
D.
,
Weyand
,
M.
,
Wilhelm
,
M.
, and
Hetzer
,
R.
,
2008
, “
Influence of Inflow Cannula Length in Axial-Flow Pumps on Neurologic Adverse Event Rate: Results From a Multi-Center Analysis
,”
J. Heart Lung Transplant.
,
27
(
3
), pp.
253
260
.10.1016/j.healun.2007.12.007
5.
Najjar
,
S.
,
Slaughter
,
M.
,
Pagani
,
F.
,
Starling
,
R.
,
McGee
,
E.
,
Eckman
,
P.
,
Tatooles
,
A.
,
Moazami
,
N.
,
Kormos
,
R.
,
Hathaway
,
D.
,
Najarian
,
K.
,
Bhat
,
G.
,
Aaronson
,
K.
, and
Boyce
,
S.
,
2014
, “
An Analysis of Pump Thrombus Events in Patients in the Heartware Advance Bridge to Transplant and Continued Access Protocol Trial
,”
J. Heart Lung Transplant.
,
33
(
1
), pp.
23
34
.10.1016/j.healun.2013.12.001
6.
Inci
,
G.
, and
Sorgüven
,
E.
,
2012
, “
Effect of LVAD Outlet Graft Anastomosis Angle on the Aortic Valve, Wall, and Flow
,”
ASAIO J.
,
58
(
4
), pp.
373
381
.10.1097/MAT.0b013e3182578b6a
7.
Karmonik
,
C.
,
Partovi
,
S.
,
Loebe
,
M.
,
Schmack
,
B.
,
Weymann
,
A.
,
Lumsden
,
A.
,
Karck
,
M.
, and
Ruhparwar
,
A.
,
2014
, “
Computational Fluid Dynamics in Patients With Continuous-Flow Left Ventricular Assist Device Support Show Hemodynamic Alterations in the Ascending Aorta
,”
J. Thorac. Cardiovasc. Surg.
,
147
(
4
), pp.
1326
1333.E1
.10.1016/j.jtcvs.2013.09.069
8.
John
,
R.
,
Panch
,
S.
,
Hrabe
,
J.
,
Wei
,
P.
,
Solovey
,
A.
,
Joyce
,
L.
, and
Hebbel
,
R.
,
2009
, “
Activation of Endothelial and Coagulation Systems in Left Ventricular Assist Device Recipients
,”
Ann. Thorac. Surg.
,
88
(
4
), pp.
1171
1179
.10.1016/j.athoracsur.2009.06.095
9.
Ambardekar
,
A.
,
Hunter
,
K.
,
Babu
,
A.
,
Tuder
,
R.
,
Dodson
,
R.
, and
Lindenfeld
,
J.
,
2015
, “
Changes in Aortic Wall Structure, Composition, and Stiffness With Continuous-Flow Left Ventricular Assist Devices
,”
Circ.: Heart Failure
,
8
(
5
), pp.
944
952
.10.1161/CIRCHEARTFAILURE.114.001955
10.
Patel
,
A.
,
Dodson
,
R.
,
Cornwell
,
W. K. I.
,
Hunter
,
K.
,
Cleveland
,
J. C. J.
,
Brieke
,
A.
,
Lindenfeld
,
J.
, and
Ambardekar
,
A.
,
2017
, “
Dynamic Changes in Aortic Vascular Stiffness in Patients Bridged to Transplant With Continuous-Flow Left Ventricular Assist Devices
,”
JACC: Heart Failure
,
5
(
6
), pp.
449
459
.10.1016/j.jchf.2016.12.009
11.
Miera
,
O.
,
Kirk
,
R.
,
Buchholz
,
H.
,
Schmitt
,
K.
,
Vanderpluym
,
C.
,
Rebeyka
,
I.
,
Wrightson
,
N.
,
Berger
,
F.
,
Griselli
,
M.
, and
Conway
,
J.
,
2016
, “
A Multicenter Study of the Heartware Ventricular Assist Device in Small Children
,”
J. Heart Lung Transplant.
,
35
(
5
), pp.
679
681
.10.1016/j.healun.2016.01.019
12.
Adachi
,
I.
,
Burki
,
S.
, and
Fraser
,
C.
,
2017
, “
Current Status of Pediatric Ventricular Assist Device Support
,”
Seminars Thorac. Cardiovasc. Surg.: Pediatric Card. Surg. Annu.
,
20
, pp.
2
8
.10.1053/j.pcsu.2016.09.010
13.
Yang
,
N.
,
Deutsch
,
S.
,
Paterson
,
E.
, and
Manning
,
K.
,
2010
, “
Hemodynamics of an End-to-Side Anastomotic Graft for a Pulsatile Pediatric Ventricular Assist Device
,”
ASME J. Biomech. Eng.
,
132
(
3
), p.
031009
.10.1115/1.4000872
14.
Yang
,
N.
,
Deutsch
,
S.
,
Paterson
,
E.
, and
Manning
,
K.
,
2010
, “
Comparative Study of Continuous and Pulsatile Left Ventricular Assist Devices on Hemodynamics of a Pediatric End-to-Side Anastomotic Graft
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
88
103
.10.1007/s13239-010-0006-6
15.
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Chiu
,
W.-C.
,
Lynch
,
B.
,
Jesty
,
J.
,
Einav
,
S.
,
Slepian
,
M.
, and
Bluestein
,
D.
,
2012
, “
Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance
,”
PLoS ONE
,
7
(
3
), epub.10.1371/journal.pone.0032463
16.
Chiu
,
W.-C.
,
Girdhar
,
G.
,
Xenos
,
M.
,
Alemu
,
Y.
,
Einav
,
S.
,
Slepian
,
M.
, and
Bluestein
,
D.
,
2014
, “
Thromboresistance Comparison of the Heartmate—II: Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized Heartassist 5 Vad
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021014
.10.1115/1.4026254
17.
Couperus
,
L.
,
Delgado
,
V.
,
Khidir
,
M.
,
Vester
,
M.
,
Palmen
,
M.
,
Fiocco
,
M.
,
Holman
,
E.
,
Tops
,
L.
,
Klautz
,
R.
,
Verwey
,
H.
,
Schalij
,
M.
, and
Beeres
,
S.
,
2017
, “
Pump Speed Optimization in Stable Patients With a Left Ventricular Assist Device
,”
ASAIO J.
,
63
(
3
), pp.
266
272
.10.1097/MAT.0000000000000483
18.
Uriel
,
N.
,
Adatya
,
S.
,
Malý
,
J.
,
Kruse
,
E.
,
Rodgers
,
D.
,
Heatley
,
G.
,
Herman
,
A.
,
Sood
,
P.
,
Berliner
,
D.
,
Bauersachs
,
J.
,
Haverich
,
A.
,
Želízko
,
M.
,
Schmitto
,
J. D.
, and
Netuka
,
I.
,
2017
, “
Clinical Hemodynamic Evaluation of Patients Implanted With a Fully Magnetically Levitated Left Ventricular Assist Device (Heartmate 3)
,”
J. Heart Lung Transplant.
,
36
(
1
), pp.
28
35
.10.1016/j.healun.2016.07.008
19.
Ong
,
C.
,
Dokos
,
S.
,
Chan
,
B.
,
Lim
,
E.
,
Al Abed
,
A. B.
,
Abu Osman
,
N.
,
Kadiman
,
S.
, and
Lovell
,
N.
,
2013
, “
Numerical Investigation of the Effect of Cannula Placement on Thrombosis
,”
Theor. Biol. Med. Model.
,
10
, p.
35
.10.1186/1742-4682-10-35
20.
Chivukula
,
V. K.
,
Beckman
,
J. A.
,
Prisco
,
A. R.
,
Dardas
,
T.
,
Lin
,
S.
,
Smith
,
J. W.
,
Mokadam
,
N. A.
, and
Aliseda
,
A. C. M.
,
2018
, “
Left Ventricular Assist Device Inflow Cannula Angle and Thrombosis Risk
,”
Circ.: Heart Failure
,
11
(
4
), p.
e004325
.10.1161/CIRCHEARTFAILURE.117.004325
21.
Osorio
,
A.
,
Osorio
,
R.
,
Ceballos
,
A.
,
Tran
,
R.
,
Clark
,
W.
,
Divo
,
E.
,
Argueta-Morales
,
I.
,
Kassab
,
A.
, and
DeCampli
,
W.
,
2013
, “
Computational Fluid Dynamics Analysis of Surgical Adjustment of Left Ventricular Assist Device Implantation to Minimise Stroke Risk
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
6
), pp.
622
638
.10.1080/10255842.2011.629616
22.
Aliseda
,
A.
,
Chivukula
,
V.
,
McGah
,
P.
,
Prisco
,
A.
,
Beckman
,
J.
,
Garcia
,
G.
,
Mokadam
,
N.
, and
Mahr
,
C.
,
2017
, “
LVAD Outflow Graft Angle and Thrombosis Risk
,”
ASAIO J.
,
63
(
1
), pp.
14
23
.10.1097/MAT.0000000000000443
23.
Argueta-Morales
,
I.
,
Tran
,
R.
,
Ceballos
,
A.
,
Clark
,
W.
,
Osorio
,
R.
,
Divo
,
E.
,
Kassab
,
A.
, and
DeCampli
,
W.
,
2014
, “
Mathematical Modeling of Patient-Specific Ventricular Assist Device Implantation to Reduce Particulate Embolization Rate to Cerebral Vessels
,”
ASME J. Biomech. Eng.
,
136
(
7
), p.
071008
.10.1115/1.4026498
24.
Estep
,
J.
,
Vivo
,
R.
,
Cordero-Reyes
,
A.
,
Bhimaraj
,
A.
,
Trachtenberg
,
B.
,
Torre-Amione
,
G.
,
Chang
,
S.
,
Elias
,
B.
,
Bruckner
,
B.
,
Suarez
,
E.
, and
Loebe
,
M.
,
2014
, “
A Simplified Echocardiographic Technique for Detecting Continuous-Flow Left Ventricular Assist Device Malfunction Due to Pump Thrombosis
,”
J. Heart Lung Transplant.
,
33
(
6
), pp.
575
586
.10.1016/j.healun.2014.01.865
25.
Stainback
,
R.
,
Estep
,
J.
,
Agler
,
D.
,
Birks
,
E.
,
Bremer
,
M.
,
Hung
,
J.
,
Kirkpatrick
,
J.
,
Rogers
,
J.
, and
Shah
,
N.
,
2015
, “
Echocardiography in the Management of Patients With Left Ventricular Assist Devices: Recommendations From the American Society of Echocardiography
,”
J. Am. Soc. Echocardiography
,
28
(
8
), pp.
853
909
.10.1016/j.echo.2015.05.008
26.
Markl
,
M.
,
Frydrychowicz
,
A.
,
Kozerke
,
S.
,
Hope
,
M.
, and
Wieben
,
O.
,
2012
, “
4D Flow MRI
,”
J. Magn. Reson. Imaging
,
36
(
5
), pp.
1015
1036
.10.1002/jmri.23632
27.
Schmitter
,
S.
, and
Schnell
,
S.
,
2018
, “
4D Flow MRI
,”
J. Magn. Reson. Imaging
,
36
(
5
), pp.
187
212
.10.1007/978-3-319-65924-4_9
28.
Schmitter
,
S.
,
Schnell
,
S.
,
Uğurbil
,
K.
,
Markl
,
M.
, and
Van de Moortele
,
P.-F.
,
2016
, “
Towards High-Resolution 4D Flow MRI in the Human Aorta Using kt-Grappa and b1+ Shimming at 7t
,”
J. Magn. Reson. Imaging
,
44
(
2
), pp.
486
499
.10.1002/jmri.25164
29.
Benk
,
C.
,
Mauch
,
A.
,
Beyersdorf
,
F.
,
Klemm
,
R.
,
Russe
,
M.
,
Blanke
,
P.
,
Korvink
,
J.
,
Markl
,
M.
, and
Jung
,
B.
,
2013
, “
Effect of Cannula Position in the Thoracic Aorta With Continuous Left Ventricular Support: Four-Dimensional Flow-Sensitive Magnetic Resonance Imaging in an In Vitro Model
,”
Eur. J. Cardio-Thorac. Surg.
,
44
(
3
), pp.
551
558
.10.1093/ejcts/ezt095
30.
DiGiorgi
,
P.
,
Smith
,
D.
,
Naka
,
Y.
, and
Oz
,
M.
,
2004
, “
In Vitro Characterization of Aortic Retrograde and Antegrade Flow From Pulsatile and Non-Pulsatile Ventricular Assist Devices
,”
J. Heart Lung Transplant.
,
23
(
2
), pp.
186
192
.10.1016/S1053-2498(03)00107-4
31.
Jalal
,
S.
,
Nemes
,
A.
,
Van de Moortele
,
T.
,
Schmitter
,
S.
, and
Coletti
,
F.
,
2016
, “
Three-Dimensional Inspiratory Flow in a Double Bifurcation Airway Model
,”
Exp. Fluids
,
57
(
9
), epub.https://link.springer.com/article/10.1007/s00348-016-2234-5
32.
Jalal
,
S.
,
Van De Moortele
,
T.
,
Nemes
,
A.
,
Amili
,
O.
, and
Coletti
,
F.
,
2018
, “
Three-Dimensional Steady and Oscillatory Flow in a Double Bifurcation Airway Model
,”
Phys. Rev. Fluids
,
3
(
10
), epub.10.1103/PhysRevFluids.3.103101
33.
Amili
,
O.
,
Schiavazzi
,
D.
,
Moen
,
S.
,
Jagadeesan
,
B.
,
Van De Moortele
,
P.-F.
, and
Coletti
,
F.
,
2018
, “
Hemodynamics in a Giant Intracranial Aneurysm Characterized by In Vitro 4D Flow MRI
,”
PLoS ONE
,
13
(
1
), p.
e0188323
.10.1371/journal.pone.0188323
34.
Elkins
,
C.
, and
Alley
,
M.
,
2007
, “
Magnetic Resonance Velocimetry: Applications of Magnetic Resonance Imaging in the Measurement of Fluid Motion
,”
Exp. Fluids
,
43
(
6
), pp.
823
858
.10.1007/s00348-007-0383-2
35.
Pelc
,
N.
,
Sommer
,
F.
,
Li
,
K.
,
Brosnan
,
T.
,
Herfkens
,
R.
, and
Enzmann
,
D.
,
1994
, “
Quantitative Magnetic Resonance Flow Imaging
,”
Magn. Reson. Q.
,
10
(
3
), pp.
125
147
.
36.
Tchen
,
C.
,
1947
, “
Mean Value and Correlation Problems Connected With the Motion of Small Particles Suspended in a Turbulent Fluid
,” Ph.D. thesis, TU Delft, Delft, The Netherlands.
37.
Corrsin
,
S.
, and
Lumley
,
J.
,
1956
, “
On the Equation of Motion for a Particle in Turbulent Fluid
,”
Appl. Sci. Res., Sect. A
,
6
(
2–3
), pp.
114
116
.10.1007/BF03185030
38.
Buevich
,
Y.
,
1966
, “
Two-Fluid “Ph.D. Thesis,” a Fluidized Bed
,”
Fluid Dyn.
,
1
(
4
), pp.
65
69
.10.1007/BF01020467
39.
Riley
,
J.
,
1971
, “Ph.D. Thesis,” The Johns Hopkins University, Baltimore, MD.
40.
Maxey
,
M.
, and
Riley
,
J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.10.1063/1.864230
41.
Balachandar
,
S.
,
2009
, “
A Scaling Analysis for Point-Particle Approaches to Turbulent Multiphase Flows
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
801
810
.10.1016/j.ijmultiphaseflow.2009.02.013
42.
Mukherjee
,
D.
,
Padilla
,
J.
, and
Shadden
,
S.
,
2016
, “
Numerical Investigation of Fluid-Particle Interactions for Embolic Stroke
,”
Theor. Comput. Fluid Dyn.
,
30
(
1–2
), pp.
23
39
.10.1007/s00162-015-0359-4
43.
Saffman
,
P.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.10.1017/S0022112065000824
44.
Segré
,
G.
, and
Silberberg
,
A.
,
1962
, “
Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow—Part 1: Determination of Local Concentration by Statistical Analysis of Particle Passages Through Crossed Light Beams
,”
J. Fluid Mech.
,
14
(
1
), pp.
115
135
.10.1017/S002211206200110X
45.
Segré
,
G.
, and
Silberberg
,
A.
,
1962
, “
Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow—Part 2: Experimental Results and Interpretation
,”
J. Fluid Mech.
,
14
(
1
), pp.
136
157
.10.1017/S0022112062001111
46.
Balachandar
,
S.
, and
Eaton
,
J.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
47.
Sapsis
,
T.
,
Ouellette
,
N.
,
Gollub
,
J.
, and
Haller
,
G.
,
2011
, “
Neutrally Buoyant Particle Dynamics in Fluid Flows: Comparison of Experiments With Lagrangian Stochastic Models
,”
Phys. Fluids
,
23
(
9
), epub.10.1063/1.3632100
48.
Farazmand
,
M.
, and
Haller
,
G.
,
2015
, “
The Maxey Riley Equation: Existence, Uniqueness and Regularity of Solutions
,”
Nonlinear Anal.: Real World Appl.
,
22
, pp.
98
106
.10.1016/j.nonrwa.2014.08.002
49.
Skorczewski
,
T.
,
Erickson
,
L.
, and
Fogelson
,
A.
,
2013
, “
Platelet Motion Near a Vessel Wall or Thrombus Surface in Two-Dimensional Whole Blood Simulations
,”
Biophys. J.
,
104
(
8
), pp.
1764
1772
.10.1016/j.bpj.2013.01.061
50.
Carr
,
I.
,
Nemoto
,
N.
,
Schwartz
,
R.
, and
Shadden
,
S.
,
2013
, “
Size-Dependent Predilections of Cardiogenic Embolic Transport
,”
Am. J. Physiol.—Heart Circ. Physiol.
,
305
(
5
), pp.
H732
H739
.10.1152/ajpheart.00320.2013
51.
Moftakhar
,
P.
,
English
,
J.
,
Cooke
,
D.
,
Kim
,
W.
,
Stout
,
C.
,
Smith
,
W.
,
Dowd
,
C.
,
Higashida
,
R.
,
Halbach
,
V.
, and
Hetts
,
S.
,
2013
, “
Density of Thrombus on Admission ct Predicts Revascularization Efficacy in Large Vessel Occlusion Acute Ischemic Stroke
,”
Stroke
,
44
(
1
), pp.
243
245
.10.1161/STROKEAHA.112.674127
52.
Santos
,
E.
,
Yoo
,
A.
,
Beenen
,
L.
,
Berkhemer
,
O.
,
den Blanken
,
M.
,
Wismans
,
C.
,
Niessen
,
W.
,
Majoie
,
C.
, and
Marquering
,
H.
,
2016
, “
Observer Variability of Absolute and Relative Thrombus Density Measurements in Patients With Acute Ischemic Stroke
,”
Neuroradiology
,
58
(
2
), pp.
133
139
.10.1007/s00234-015-1607-4
53.
Ericson
,
C.
,
2004
,
Real-Time Collision Detection
,
CRC Press
,
Boca Raton, FL
.
54.
Gondret
,
P.
,
Lance
,
M.
, and
Petit
,
L.
,
2002
, “
Bouncing Motion of Spherical Particles in Fluids
,”
Phys. Fluids
,
14
(
2
), pp.
643
652
.10.1063/1.1427920
55.
Yigit
,
A.
,
Christoforou
,
A.
, and
Majeed
,
M.
,
2011
, “
A Nonlinear Visco-Elastoplastic Impact Model and the Coefficient of Restitution
,”
Nonlinear Dyn.
,
66
(
4
), pp.
509
521
.10.1007/s11071-010-9929-6
56.
Mukherjee
,
D.
,
Jani
,
N.
,
Selvaganesan
,
K.
,
Weng
,
C.
, and
Shadden
,
S.
,
2016
, “
Computational Assessment of the Relation Between Embolism Source and Embolus Distribution to the Circle of Willis for Improved Understanding of Stroke Etiology
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081008
.10.1115/1.4033986
57.
Amili
,
O.
,
Golzarian
,
J.
, and
Coletti
,
F.
,
2019
, “
In Vitro Study of Particle Transport in Successively Bifurcating Vessels
,”
Ann. Biomed. Eng.
, epub.10.1007/s10439-019-02293-2
58.
Cowger
,
J.
,
Pagani
,
F.
,
Haft
,
J.
,
Romano
,
M.
,
Aaronson
,
K.
, and
Kolias
,
T.
,
2010
, “
The Development of Aortic Insufficiency in Left Ventricular Assist Device-Supported Patients
,”
Circ.: Heart Failure
,
3
(
6
), pp.
668
674
.10.1161/CIRCHEARTFAILURE.109.917765
59.
Aggarwal
,
A.
,
Raghuvir
,
R.
,
Eryazici
,
P.
,
MacAluso
,
G.
,
Sharma
,
P.
,
Blair
,
C.
,
Tatooles
,
A.
,
Pappas
,
P.
, and
Bhat
,
G.
,
2013
, “
The Development of Aortic Insufficiency in Continuous-Flow Left Ventricular Assist Device-Supported Patients
,”
Ann. Thorac. Surg.
,
95
(
2
), pp.
493
498
.10.1016/j.athoracsur.2012.09.020
60.
Arzani
,
A.
,
Gambaruto
,
A.
,
Chen
,
G.
, and
Shadden
,
S.
,
2017
, “
Wall Shear Stress Exposure Time: A Lagrangian Measure of Near-Wall Stagnation and Concentration in Cardiovascular Flows
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
787
803
.10.1007/s10237-016-0853-7
61.
Taylor
,
C.
,
Cheng
,
C.
,
Espinosa
,
L.
,
Tang
,
B.
,
Parker
,
D.
, and
Herfkens
,
R.
,
2002
, “
In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise
,”
Ann. Biomed. Eng.
,
30
(
3
), pp.
402
408
.10.1114/1.1476016
62.
Sen
,
P.
, and
Oberton
,
S.
,
2017
, “
Outcomes Using LVADs for Destination Therapy
,”
Mechanical Circulatory Support for Advanced Heart Failure
, Springer, Berlin, pp.
209
219
.
63.
Bushi
,
D.
,
Grad
,
Y.
,
Einav
,
S.
,
Yodfat
,
O.
,
Nishri
,
B.
, and
Tanne
,
D.
,
2005
, “
Hemodynamic Evaluation of Embolic Trajectory in an Arterial Bifurcation: An In-Vitro Experimental Model
,”
Stroke
,
36
(
12
), pp.
2696
2700
.10.1161/01.STR.0000190097.08862.9a
64.
Shadden
,
S.
, and
Arzani
,
A.
,
2015
, “
Lagrangian Postprocessing of Computational Hemodynamics
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
41
58
.10.1007/s10439-014-1070-0
65.
Erturk
,
M.
,
Wu
,
X.
,
Eryaman
,
Y.
,
Van de Moortele
,
P.-F.
,
Auerbach
,
E.
,
Lagore
,
R.
,
DelaBarre
,
L.
,
Vaughan
,
J.
,
Uurbil
,
K.
,
Adriany
,
G.
, and
Metzger
,
G.
,
2017
, “
Toward Imaging the Body at 10.5 Tesla
,”
Magn. Reson. Med.
,
77
(
1
), pp.
434
443
.10.1002/mrm.26487
66.
Schnell
,
S.
,
Ansari
,
S.
,
Wu
,
C.
,
Garcia
,
J.
,
Murphy
,
I.
,
Rahman
,
O.
,
Rahsepar
,
A.
,
Aristova
,
M.
,
Collins
,
J.
,
Carr
,
J.
, and
Markl
,
M.
,
2017
, “
Accelerated Dual-Venc 4D Flow MRI for Neurovascular Applications
,”
J. Magn. Reson. Imaging
,
46
(
1
), pp.
102
114
.10.1002/jmri.25595
67.
Ku
,
D.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
68.
Gijsen
,
F.
,
Van De Vosse
,
F.
, and
Janssen
,
J.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.10.1016/S0021-9290(99)00015-9
69.
Cebral
,
J.
,
Castro
,
M.
,
Appanaboyina
,
S.
,
Putman
,
C.
,
Millan
,
D.
, and
Frangi
,
A.
,
2005
, “
Efficient Pipeline for Image-Based Patient-Specific Analysis of Cerebral Aneurysm Hemodynamics: Technique and Sensitivity
,”
IEEE Trans. Med. Imaging
,
24
(
4
), pp.
457
467
.10.1109/TMI.2005.844159
70.
Chen
,
J.
, and
Lu
,
X.-Y.
,
2006
, “
Numerical Investigation of the Non-Newtonian Pulsatile Blood Flow in a Bifurcation Model With a Non-Planar Branch
,”
J. Biomech.
,
39
(
5
), pp.
818
832
.10.1016/j.jbiomech.2005.02.003
You do not currently have access to this content.