Abstract

Articular cartilage focal defects are common soft tissue injuries potentially linked to osteoarthritis (OA) development. Although several defect characteristics likely contribute to osteoarthritis, their relationship to local tissue deformation remains unclear. Using finite element models with various femoral cartilage geometries, we explore how defects change cartilage deformation and joint kinematics assuming loading representative of the maximum joint compression during the stance phase of gait. We show how defects, in combination with location-dependent cartilage mechanics, alter deformation in affected and opposing cartilages, as well as joint kinematics. Small and average sized defects increased maximum compressive strains by approximately 50% and 100%, respectively, compared to healthy cartilage. Shifts in the spatial locations of maximum compressive strains of defect containing models were also observed, resulting in loading of cartilage regions with reduced initial stiffnesses supporting the new, elevated loading environments. Simulated osteoarthritis (modeled as a global reduction in mean cartilage stiffness) did not significantly alter joint kinematics, but exacerbated tissue deformation. Femoral defects were also found to affect healthy tibial cartilage deformations. Lateral femoral defects increased tibial cartilage maximum compressive strains by 25%, while small and average sized medial defects exhibited decreases of 6% and 15%, respectively, compared to healthy cartilage. Femoral defects also affected the spatial distributions of deformation across the articular surfaces. These deviations are especially meaningful in the context of cartilage with location-dependent mechanics, leading to increases in peak contact stresses supported by the cartilage of between 11% and 34% over healthy cartilage.

References

1.
Årøen
,
A.
,
Løken
,
S.
,
Heir
,
S.
,
Alvik
,
E.
,
Ekeland
,
A.
,
Granlund
,
O. G.
, and
Engebretsen
,
L.
,
2004
, “
Articular Cartilage Lesions in 993 Consecutive Knee Arthroscopies
,”
Am. J. Sports Med.
,
32
(
1
), pp.
211
215
.10.1177/0363546503259345
2.
Curl
,
W. W.
,
Krome
,
J.
,
Gordon
,
E. S.
,
Rushing
,
J.
,
Smith
,
B. P.
, and
Poehling
,
G. G.
,
1997
, “
Cartilage Injuries: A Review of 31,516 Knee Arthroscopies
,”
Arthroscopy J. Arthroscopic Relat. Surg.
,
13
(
4
), pp.
456
460
.10.1016/S0749-8063(97)90124-9
3.
Hjelle
,
K.
,
Solheim
,
E.
,
Strand
,
T.
,
Muri
,
R.
, and
Brittberg
,
M.
,
2002
, “
Articular Cartilage Defects in 1,000 Knee Arthroscopies
,”
Arthroscopy J. Arthroscopic Relat. Surg.
,
18
(
7
), pp.
730
734
.10.1053/jars.2002.32839
4.
Widuchowski
,
W.
,
Widuchowski
,
J.
, and
Trzaska
,
T.
,
2007
, “
Articular Cartilage Defects: Study of 25,124 Knee Arthroscopies
,”
Knee
,
14
(
3
), pp.
177
182
.10.1016/j.knee.2007.02.001
5.
Wang
,
Y.
,
Ding
,
C.
,
Wluka
,
A.
,
Davis
,
S.
,
Ebeling
,
P.
,
Jones
,
G.
, and
Cicuttini
,
F.
,
2006
, “
Factors Affecting Progression of Knee Cartilage Defects in Normal Subjects Over 2 Years
,”
Rheumatology
,
45
(
1
), pp.
79
84
.10.1093/rheumatology/kei108
6.
Lefkoe
,
T. P.
,
Trafton
,
P. G.
,
Ehrlich
,
M. G.
,
Walsh
,
W. R.
,
Dennehy
,
D. T.
,
Barrach
,
H.-J.
, and
Akelman
,
E.
,
1993
, “
An Experimental Model of Femoral Condylar Defect Leading to Osteoarthrosis
,”
J. Orthop. Trauma
,
7
(
5
), pp.
458
467
.10.1097/00005131-199310000-00009
7.
Goldring
,
S. R.
, and
Goldring
,
M. B.
,
2004
, “
The Role of Cytokines in Cartilage Matrix Degeneration in Osteoarthritis
,”
Clin. Orthop. Relat. Res.
,
427
, pp.
S27
S36
.10.1097/01.blo.0000144854.66565.8f
8.
Venäläinen
,
M. S.
,
Mononen
,
M. E.
,
Salo
,
J.
,
Räsänen
,
L. P.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
,
Virén
,
T.
, and
Korhonen
,
R. K.
,
2016
, “
Quantitative Evaluation of the Mechanical Risks Caused by Focal Cartilage Defects in the Knee
,”
Sci. Rep.
,
6
, p.
37538
.https://www.nature.com/articles/srep37538
9.
Wong
,
B. L.
, and
Sah
,
R. L.
,
2010
, “
Effect of a Focal Articular Defect on Cartilage Deformation During Patello-Femoral Articulation
,”
J. Orthop. Res.
,
28
(
12
), pp.
1554
1561
.10.1002/jor.21187
10.
Brown
,
T. D.
,
Pope
,
D. F.
,
Hale
,
J. E.
,
Buckwalter
,
J. A.
, and
Brand
,
R. A.
,
1991
, “
Effects of Osteochondral Defect Size on Cartilage Contact Stress
,”
J. Orthop. Res.
,
9
(
4
), pp.
559
567
.10.1002/jor.1100090412
11.
Gratz
,
K. R.
,
Wong
,
B. L.
,
Bae
,
W. C.
, and
Sah
,
R. L.
,
2009
, “
The Effects of Focal Articular Defects on Cartilage Contact Mechanics
,”
J. Orthop. Res.
,
27
(
5
), p.
584
.10.1002/jor.20762
12.
Guettler
,
J. H.
,
Demetropoulos
,
C. K.
,
Yang
,
K. H.
, and
Jurist
,
K. A.
,
2004
, “
Osteochondral Defects in the Human Knee Influence of Defect Size on Cartilage Rim Stress and Load Redistribution to Surrounding Cartilage
,”
Am. J. Sports Med.
,
32
(
6
), pp.
1451
1458
.10.1177/0363546504263234
13.
Dabiri
,
Y.
, and
Li
,
L.
,
2015
, “
Focal Cartilage Defect Compromises Fluid-Pressure Dependent Load Support in the Knee Joint
,”
Int. J. Numer. Methods Biomed. Eng.
,
31
(
6
), p.
e02713
.10.1002/cnm.2713
14.
D'Lima
,
D. D.
,
Chen
,
P. C.
, and
Colwell
,
C. W.
, Jr.
,
2009
, “
Osteochondral Grafting: Effect of Graft Alignment, Material Properties, and Articular Geometry
,”
Open Orthop. J.
,
3
(
1
), pp.
61
68
.10.2174/1874325000903010061
15.
Dong
,
Y.-F.
,
Hu
,
G.-H.
,
Zhang
,
L.-L.
,
Hu
,
Y.
,
Dong
,
Y.-H.
, and
Xu
,
Q.-R.
,
2011
, “
Accurate 3D Reconstruction of Subject-Specific Knee Finite Element Model to Simulate the Articular Cartilage Defects
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
16
(
5
), pp.
620
627
.10.1007/s12204-011-1199-z
16.
Heuijerjans
,
A.
,
Wilson
,
W.
,
Ito
,
K.
, and
van Donkelaar
,
C.
,
2017
, “
The Critical Size of Focal Articular Cartilage Defects Is Associated With Strains in the Collagen Fibers
,”
Clin. Biomech.
,
50
, pp.
40
46
.10.1016/j.clinbiomech.2017.09.015
17.
Manda
,
K.
,
Ryd
,
L.
, and
Eriksson
,
A.
,
2011
, “
Finite Element Simulations of a Focal Knee Resurfacing Implant Applied to Localized Cartilage Defects in a Sheep Model
,”
J. Biomech.
,
44
(
5
), pp.
794
801
.10.1016/j.jbiomech.2010.12.026
18.
Papaioannou
,
G.
,
Demetropoulos
,
C. K.
, and
King
,
Y. H.
,
2010
, “
Predicting the Effects of Knee Focal Articular Surface Injury With a Patient-Specific Finite Element Model
,”
Knee
,
17
(
1
), pp.
61
68
.10.1016/j.knee.2009.05.001
19.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2007
, “
Effect of the Size and Location of Osteochondral Defects in Degenerative Arthritis. A Finite Element Simulation
,”
Comput. Biol. Med.
,
37
(
3
), pp.
376
387
.10.1016/j.compbiomed.2006.04.004
20.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
,
2009
, “
Computational Biomechanics of Articular Cartilage of Human Knee Joint: Effect of Osteochondral Defects
,”
J. Biomech.
,
42
(
15
), pp.
2458
2465
.10.1016/j.jbiomech.2009.07.022
21.
Weiss
,
J. A.
,
Moulis
,
P. M.
,
Ayliffe
,
H. E.
,
Rosenberg
,
T. D.
, and
Cooley
,
V. J.
,
1998
, “
Finite Element Simulation of Stresses in Healing Cartilage Defects
,”
ASME Publications Bed
,
39
, pp.
263
264
.10.7150/ijbs.7.112
22.
Chen
,
C. T.
, and
Torzilli
,
P. A.
,
2015
, In Vitro Cartilage Explant Injury Models,
Post-Traumatic Arthritis
,
Springer
,
Boston, MA
, pp.
29
40
.
23.
Torzilli
,
P.
,
Grigiene
,
R.
,
Borrelli
,
J.
, and
Helfet
,
D.
,
1999
, “
Effect of Impact Load on Articular Cartilage: Cell Metabolism and Viability, and Matrix Water Content
,”
ASME J. Biomech. Eng.
,
121
(
5
), pp.
433
441
.10.1115/1.2835070
24.
Verteramo
,
A.
, and
Seedhom
,
B. B.
,
2007
, “
Effect of a Single Impact Loading on the Structure and Mechanical Properties of Articular Cartilage
,”
J. Biomech.
,
40
(
16
), pp.
3580
3589
.10.1016/j.jbiomech.2007.06.002
25.
Wilson
,
W.
,
van Burken
,
C.
,
van Donkelaar
,
C.
,
Buma
,
P.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2006
, “
Causes of Mechanically Induced Collagen Damage in Articular Cartilage
,”
J. Orthop. Res.
,
24
(
2
), pp.
220
228
.10.1002/jor.20027
26.
Hosseini
,
S.
,
Wilson
,
W.
,
Ito
,
K.
, and
van Donkelaar
,
C.
,
2014
, “
A Numerical Model to Study Mechanically Induced Initiation and Progression of Damage in Articular Cartilage
,”
Osteoarthritis Cartilage
,
22
(
1
), pp.
95
103
.10.1016/j.joca.2013.10.010
27.
Liukkonen
,
M. K.
,
Mononen
,
M. E.
,
Klets
,
O.
,
Arokoski
,
J. P.
,
Saarakkala
,
S.
, and
Korhonen
,
R. K.
,
2017
, “
Simulation of Subject-Specific Progression of Knee Osteoarthritis and Comparison to Experimental Follow-Up Data: Data From the Osteoarthritis Initiative
,”
Sci. Rep.
,
7
, p.
9177
.10.1038/s41598-017-09013-7
28.
Mononen
,
M. E.
,
Tanska
,
P.
,
Isaksson
,
H.
, and
Korhonen
,
R. K.
,
2016
, “
A Novel Method to Simulate the Progression of Collagen Degeneration of Cartilage in the Knee: Data From the Osteoarthritis Initiative
,”
Sci. Rep.
,
6
, p.
21415
.https://www.nature.com/articles/srep21415
29.
Appleyard
,
R.
,
Burkhardt
,
D.
,
Ghosh
,
P.
,
Read
,
R.
,
Cake
,
M.
,
Swain
,
M.
, and
Murrell
,
G.
,
2003
, “
Topographical Analysis of the Structural, Biochemical and Dynamic Biomechanical Properties of Cartilage in an Ovine Model of Osteoarthritis
,”
Osteoarthritis Cartilage
,
11
(
1
), pp.
65
77
.10.1053/joca.2002.0867
30.
Appleyard
,
R. C.
,
Swain
,
M. V.
,
Khanna
,
S.
, and
Murrell
,
G. A.
,
2001
, “
The Accuracy and Reliability of a Novel Handheld Dynamic Indentation Probe for Analysing Articular Cartilage
,”
Phys. Med. Biol.
,
46
(
2
), p.
541
.10.1088/0031-9155/46/2/319
31.
Deneweth
,
J. M.
,
McLean
,
S. G.
, and
Arruda
,
E. M.
,
2013
, “
Evaluation of Hyperelastic Models for the Non-Linear and Non-Uniform High Strain-Rate Mechanics of Tibial Cartilage
,”
J. Biomech.
,
46
(
10
), pp.
1604
1610
.10.1016/j.jbiomech.2013.04.014
32.
Deneweth
,
J. M.
,
Newman
,
K. E.
,
Sylvia
,
S. M.
,
McLean
,
S. G.
, and
Arruda
,
E. M.
,
2013
, “
Heterogeneity of Tibial Plateau Cartilage in Response to a Physiological Compressive Strain Rate
,”
J. Orthop. Res.
,
31
(
3
), pp.
370
375
.10.1002/jor.22226
33.
Deneweth
,
J. M.
,
Arruda
,
E. M.
, and
McLean
,
S. G.
,
2015
, “
Hyperelastic Modeling of Location-Dependent Human Distal Femoral Cartilage Mechanics
,”
Int. J. Non-Linear Mech.
,
68
, pp.
146
156
.10.1016/j.ijnonlinmec.2014.06.013
34.
Fick
,
J.
,
Ronkainen
,
A.
,
Herzog
,
W.
, and
Korhonen
,
R.
,
2015
, “
Site-Dependent Biomechanical Responses of Chondrocytes in the Rabbit Knee Joint
,”
J. Biomech.
,
48
(
15
), pp.
4010
4019
.10.1016/j.jbiomech.2015.09.049
35.
Mow
,
V. C.
,
Holmes
,
M. H.
, and
Lai
,
W. M.
,
1984
, “
Fluid Transport and Mechanical Properties of Articular Cartilage: A Review
,”
J. Biomech.
,
17
(
5
), pp.
377
394
.10.1016/0021-9290(84)90031-9
36.
Oloyede
,
A.
,
Flachsmann
,
R.
, and
Broom
,
N. D.
,
1992
, “
The Dramatic Influence of Loading Velocity on the Compressive Response of Articular Cartilage
,”
Connect. Tissue Res.
,
27
(
4
), pp.
211
224
.10.3109/03008209209006997
37.
Ronkainen
,
A.
,
Fick
,
J.
,
Herzog
,
W.
, and
Korhonen
,
R.
,
2016
, “
Site-Specific Cell-Tissue Interactions in Rabbit Knee Joint Articular Cartilage
,”
J. Biomech.
,
49
(
13
), pp.
2882
2890
.10.1016/j.jbiomech.2016.06.033
38.
Tomkoria
,
S.
,
Patel
,
R. V.
, and
Mao
,
J. J.
,
2004
, “
Heterogeneous Nanomechanical Properties of Superficial and Zonal Regions of Articular Cartilage of the Rabbit Proximal Radius Condyle by Atomic Force Microscopy
,”
Med. Eng. Phys.
,
26
(
10
), pp.
815
822
.10.1016/j.medengphy.2004.07.006
39.
Marchi
,
B. C.
, and
Arruda
,
E. M.
,
2017
, “
A Study on the Role of Articular Cartilage Soft Tissue Constitutive Form in Models of Whole Knee Biomechanics
,”
Biomech. Model. Mechanobiol.
,
16
(
1
), pp.
117
138
.10.1007/s10237-016-0805-2
40.
Chaudhari
,
A.
,
Briant
,
P. L.
,
Bevill
,
S. L.
,
Koo
,
S.
, and
Andriacchi
,
T. P.
,
2008
, “
Knee Kinematics, Cartilage Morphology, and Osteoarthritis After ACL Injury
,”
Med. Sci. Sports Exer.
,
40
(
2
), pp.
215
222
.10.1249/mss.0b013e31815cbb0e
41.
Deneweth
,
J. M.
,
Bey
,
M. J.
,
McLean
,
S. G.
,
Lock
,
T. R.
,
Kolowich
,
P. A.
, and
Tashman
,
S.
,
2010
, “
Tibiofemoral Joint Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee During a Single-Legged Hop Landing
,”
Am. J. Sports Med.
,
38
(
9
), pp.
1820
1828
.10.1177/0363546510365531
42.
Butler
,
R. J.
,
Minick
,
K. I.
,
Ferber
,
R.
, and
Underwood
,
F.
,
2009
, “
Gait Mechanics After ACL Reconstruction: Implications for the Early Onset of Knee Osteoarthritis
,”
Br. J. Sports Med.
,
43
(
5
), pp.
366
370
.10.1136/bjsm.2008.052522
43.
Thoma
,
L. M.
,
Mcnally
,
M. P.
,
Chaudhari
,
A. M.
,
Best
,
T.
,
Flanigan
,
D. C.
,
Siston
,
R. A.
, and
Schmitt
,
L. C.
,
2017
, “
Differential Knee Joint Loading Patterns During Gait for Individuals With Tibiofemoral and Patellofemoral Articular Cartilage Defects in the Knee
,”
Osteoarthritis Cartilage
,
25
(
7
), pp.
1046
1054
.10.1016/j.joca.2017.02.794
44.
Kiapour
,
A. M.
,
Kaul
,
V.
,
Kiapour
,
A.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
,
V. K.
,
2013
, “
The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study
,”
Appl. Math.
,
4
(
05
), p.
91
.10.4236/am.2013.45A011
45.
Waldschmidt
,
J. G.
,
Rilling
,
R. J.
,
Kajdacsy-Balla
,
A. A.
,
Boynton
,
M. D.
, and
Erickson
,
S. J.
,
1997
, “
In Vitro and In Vivo MR Imaging of Hyaline Cartilage: Zonal Anatomy, Imaging Pitfalls, and Pathologic Conditions
,”
Radiographics
,
17
(
6
), pp.
1387
1402
.10.1148/radiographics.17.6.9397453
46.
Fife
,
R. S.
,
Brandt
,
K. D.
,
Braunstein
,
E. M.
,
Katz
,
B. P.
,
Shelbourne
,
K. D.
,
Kalasinski
,
L. A.
, and
Ryan
,
S.
,
1991
, “
Relationship Between Arthroscopic Evidence of Cartilage Damage and Radiographic Evidence of Joint Space Narrowing in Early Osteoarthritis of the Knee
,”
Arthritis Rheum Off. J. Am. Coll. Rheumatol.
,
34
(
4
), pp.
377
382
.10.1002/art.1780340402
47.
Donahue
,
T. L. H.
,
Hull
,
M.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
273
280
.10.1115/1.1470171
48.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K.
,
2004
, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
,
37
(
7
), pp.
1019
1030
.10.1016/j.jbiomech.2003.11.022
49.
Kiapour
,
A.
,
Kiapour
,
A. M.
,
Kaul
,
V.
,
Quatman
,
C. E.
,
Wordeman
,
S. C.
,
Hewett
,
T. E.
,
Demetropoulos
,
C. K.
, and
Goel
,
V. K.
,
2013
, “
Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011002
.10.1115/1.4025692
50.
Skaggs
,
D.
,
Warden
,
W.
, and
Mow
,
V.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
(
2
), pp.
176
185
.10.1002/jor.1100120205
51.
Tissakht
,
M.
, and
Ahmed
,
A.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
52.
Villegas
,
D. F.
,
Maes
,
J. A.
,
Magee
,
S. D.
, and
Donahue
,
T. L. H.
,
2007
, “
Failure Properties and Strain Distribution Analysis of Meniscal Attachments
,”
J. Biomech.
,
40
(
12
), pp.
2655
2662
.10.1016/j.jbiomech.2007.01.015
53.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
54.
Zielinska
,
B.
, and
Donahue
,
T. L. H.
,
2006
, “
3D Finite Element Model of Meniscectomy: Changes in Joint Contact Behavior
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
115
123
.10.1115/1.2132370
55.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
56.
Bischoff
,
J.
,
Arruda
,
E.
, and
Grosh
,
K.
,
2002
, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
570
579
.10.1115/1.1485754
57.
Robinson
,
D. L.
,
Kersh
,
M. E.
,
Walsh
,
N. C.
,
Ackland
,
D. C.
,
de Steiger
,
R. N.
, and
Pandy
,
M. G.
,
2016
, “
Mechanical Properties of Normal and Osteoarthritic Human Articular Cartilage
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
96
109
.10.1016/j.jmbbm.2016.01.015
58.
Shelburne
,
K. B.
,
Torry
,
M. R.
, and
Pandy
,
M. G.
,
2006
, “
Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait
,”
J. Orthop. Res.
,
24
(
10
), pp.
1983
1990
.10.1002/jor.20255
59.
Besier
,
T. F.
,
Fredericson
,
M.
,
Gold
,
G. E.
,
Beaupré
,
G. S.
, and
Delp
,
S. L.
,
2009
, “
Knee Muscle Forces During Walking and Running in Patellofemoral Pain Patients and Pain-Free Controls
,”
J. Biomech.
,
42
(
7
), pp.
898
905
.10.1016/j.jbiomech.2009.01.032
60.
Jordan
,
K.
,
Challis
,
J. H.
, and
Newell
,
K. M.
,
2007
, “
Walking Speed Influences on Gait Cycle Variability
,”
Gait Posture
,
26
(
1
), pp.
128
134
.[16982195]10.1016/j.gaitpost.2006.08.010
61.
Qian
,
S.-H.
,
Ge
,
S.-R.
, and
Wang
,
Q.-L.
,
2006
, “
The Frictional Coefficient of Bovine Knee Articular Cartilage
,”
J. Bionic Eng.
,
3
(
2
), pp.
79
85
.10.1016/S1672-6529(06)60011-5
62.
Unsworth
,
A.
,
Dowson
,
D.
, and
Wright
,
V.
,
1975
, “
The Frictional Behavior of Human Synovial Joints—Part I: Natural Joints
,”
ASME J. Tribol.
,
97
(
3
), pp.
369
376
.10.1115/1.3452605
63.
McLean
,
S. G.
,
Oh
,
Y. K.
,
Palmer
,
M. L.
,
Lucey
,
S. M.
,
Lucarelli
,
D. G.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task
,”
J. Bone Jt. Surg.
,
93
(
14
), pp.
1310
1317
.10.2106/JBJS.J.00259
64.
Oh
,
Y. K.
,
Kreinbrink
,
J. L.
,
Ashton-Miller
,
J. A.
, and
Wojtys
,
E. M.
,
2011
, “
Effect of ACL Transection on Internal Tibial Rotation in an In Vitro Simulated Pivot Landing
,”
J. Bone Jt. Surg. Am.
,
93
(
4
), pp.
372
380
.10.2106/JBJS.J.00262
65.
Pflum
,
M. A.
,
Shelburne
,
K. B.
,
Torry
,
M. R.
,
Decker
,
M. J.
, and
Pandy
,
M. G.
,
2004
, “
Model Prediction of Anterior Cruciate Ligament Force During Drop-Landings
,”
Med. Sci. Sports Exer.
,
36
(
11
), pp.
1949
1958
.10.1249/01.MSS.0000145467.79916.46
66.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2006
, “
The Relationship Between Quadriceps Muscle Force, Knee Flexion, and Anterior Cruciate Ligament Strain in an In Vitro Simulated Jump Landing
,”
Am. J. Sports Med.
,
34
(
2
), pp.
269
274
.10.1177/0363546505280906
67.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2008
, “
Effect of Varying Hamstring Tension on Anterior Cruciate Ligament Strain During In Vitro Impulsive Knee Flexion and Compression Loading
,”
J. Bone Jt. Surg.
,
90
(
4
), pp.
815
823
.10.2106/JBJS.F.01352
68.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
69.
Convery
,
F. R.
,
Akeson
,
W. H.
, and
Keown
,
G. H.
,
1972
, “
The Repair of Large Osteochondral Defects an Experimental Study in Horses
,”
Clin. Orthop. Relat. Res.
,
82
, pp.
253
262
.https://www.ncbi.nlm.nih.gov/pubmed/5011034
70.
Linden
,
B.
,
1977
, “
Osteochondritis Dissecans of the Femoral Condyles: A Long-Term Follow-Up Study
,”
J. Bone Jt. Surg.
,
59
(
6
), pp.
769
776
.10.2106/00004623-197759060-00010
71.
Ahmed
,
A.
, and
Burke
,
D.
,
1983
, “
In-Vitro of Measurement of Static Pressure Distribution in Synovial Joints—Part 1: Tibial Surface of the Knee
,”
ASME J. Biomech. Eng.
,
105
(
3
), pp.
216
225
.10.1115/1.3138409
72.
Peña
,
E.
,
Calvo
,
B.
,
Martinez
,
M.
, and
Doblaré
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
73.
Andriacchi
,
T. P.
,
Koo
,
S.
, and
Scanlan
,
S. F.
,
2009
, “
Gait Mechanics Influence Healthy Cartilage Morphology and Osteoarthritis of the Knee
,”
J. Bone Jt. Surg.
,
91
(
Suppl. 1
), pp.
95
101
.10.2106/JBJS.H.01408
74.
Bobić
,
V.
,
1996
, “
Arthroscopic Osteochondral Autograft Transplantation in Anterior Cruciate Ligament Reconstruction: A Preliminary Clinical Study
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
3
(
4
), pp.
262
264
.10.1007/BF01466630
75.
Engebretsen
,
L.
,
Arendt
,
E.
, and
Fritts
,
H. M.
,
1993
, “
Osteochondral Lesions and Cruciate Ligament Injuries: MRI in 18 Knees
,”
Acta Orthop. Scand.
,
64
(
4
), pp.
434
436
.10.3109/17453679308993661
76.
Matsusue
,
Y.
,
Yamamuro
,
T.
, and
Hama
,
H.
,
1993
, “
Arthroscopic Multiple Osteochondral Transplantation to the Chondral Defect in the Knee Associated With Anterior Cruciate Ligament Disruption
,”
Arthroscopy J. Arthroscopic Relat. Surg.
,
9
(
3
), pp.
318
321
.10.1016/S0749-8063(05)80428-1
77.
Murrell
,
G. A.
,
Maddali
,
S.
,
Horovitz
,
L.
,
Oakley
,
S. P.
, and
Warren
,
R. F.
,
2001
, “
The Effects of Time Course After Anterior Cruciate Ligament Injury in Correlation With Meniscal and Cartilage Loss
,”
Am. J. Sports Med.
,
29
(
1
), pp.
9
14
.10.1177/03635465010290012001
78.
Borchers
,
J. R.
,
Kaeding
,
C. C.
,
Pedroza
,
A. D.
,
Huston
,
L. J.
,
Spindler
,
K. P.
,
Wright
,
R. W.
,
Albright
,
J. P.
,
Allen
,
C. R.
,
Amendola
,
A.
,
Anderson
,
A. F.
,
Andrish
,
J. T.
,
Annunziata
,
C. C.
,
Arciero
,
R. A.
,
Bach
,
B. R.
,
Baker
,
C. L.
,
Bartolozzi
,
A. R.
,
Baumgarten
,
K. M.
,
Bechler
,
J. R.
,
Berg
,
J. H.
,
Bernas
,
G.
,
Borchers
,
J. R.
,
Brockmeier
,
S. F.
,
Brophy
,
R. H.
,
Bush-Joseph
,
C. A.
,
Butler
,
J. B.
,
Campbell
,
J. D.
,
Carey
,
J. L.
,
Carpenter
,
J. E.
,
Cole
,
B. J.
,
Cooper
,
D. E.
,
Cooper
,
J. M.
,
Cox
,
C. L.
,
Creighton
,
R. A.
,
Dahm
,
D. L.
,
David
,
T. S.
,
DeBerardino
,
T. M.
,
Dunn
,
W. R.
,
Flanigan
,
D. C.
,
Frederick
,
R. W.
,
Gatt
,
C. J.
,
Gecha
,
S. R.
,
Giffin
,
J. R.
,
Goodfellow
,
D. B.
,
Haas
,
A. K.
,
Hame
,
S. L.
,
Hannafin
,
J. A.
,
Harner
,
C. D.
,
Harris
,
N. L.
,
Hechtman
,
K. S.
,
Hershman
,
E. B.
,
Hoellrich
,
R. G.
,
Hosea
,
T. M.
,
Huston
,
L. J.
,
Johnson
,
D. C.
,
Johnson
,
T. S.
,
Jones
,
M. H.
,
Kaeding
,
C. C.
,
Klootwyk
,
T. E.
,
Lantz
,
B. A.
,
Levy
,
B. A.
,
Ma
,
C. B.
,
Maiers
,
G. P.
,
Mann
,
B.
,
Marx
,
R. G.
,
Matava
,
M. J.
,
Mathien
,
G. M.
,
McAllister
,
D. R.
,
McCarty
,
E. C.
,
McCormack
,
R. G.
,
Miller
,
B. S.
,
Motamedi
,
A. R.
,
Nissen
,
C. W.
,
O'Neill
,
D. F.
,
Parker
,
R. D.
,
Pedroza
,
A. D.
,
Purnell
,
M. L.
,
Ramappa
,
A. J.
,
Rauh
,
M. A.
,
Rettig
,
A.
,
Sekiya
,
J. K.
,
Shea
,
K. G.
,
Sherman
,
O. H.
,
Slauterbeck
,
J. R.
,
Spindler
,
K. P.
,
Stuart
,
M. J.
,
Svoboda
,
S. J.
,
Taft
,
T. N.
,
Tenuta
,
J. J.
,
Tingstad
,
E. M.
,
Vidal
,
A. F.
,
Viskontas
,
D. G.
,
White
,
R. A.
,
Williams
,
J. S.
,
Wolcott
,
M. L.
,
Wolf
,
B. R.
,
Wright
,
R. W.
, and
York
,
J. J.
, and
the MARS Group,
2011
, “
Intra-Articular Findings in Primary and Revision Anterior Cruciate Ligament Reconstruction Surgery: A Comparison of the Moon and Mars Study Groups
,”
Am. J. Sports Med.
,
39
(
9
), pp.
1889
1893
.10.1177/0363546511406871
79.
Cox
,
C. L.
,
Huston
,
L. J.
,
Dunn
,
W. R.
,
Reinke
,
E. K.
,
Nwosu
,
S. K.
,
Parker
,
R. D.
,
Wright
,
R. W.
,
Kaeding
,
C. C.
,
Marx
,
R. G.
,
Amendola
,
A.
,
McCarty
,
E. C.
,
Spindler
,
K. P.
,
Wolf
,
B. R.
, and
Harrell
,
F. E.
,
2014
, “
Are Articular Cartilage Lesions and Meniscus Tears Predictive of Ikdc, Koos, and Marx Activity Level Outcomes After Anterior Cruciate Ligament Reconstruction? A 6-Year Multicenter Cohort Study
,”
Am. J. Sports Med.
,
42
(
5
), pp.
1058
1067
.10.1177/0363546514525910
80.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
81.
Marouane
,
H.
,
Shirazi-Adl
,
A.
,
Adouni
,
M.
, and
Hashemi
,
J.
,
2014
, “
Steeper Posterior Tibial Slope Markedly Increases ACL Force in Both Active Gait and Passive Knee Joint Under Compression
,”
J. Biomech.
,
47
(
6
), pp.
1353
1359
.10.1016/j.jbiomech.2014.01.055
82.
Mootanah
,
R.
,
Imhauser
,
C. W.
,
Reisse
,
F.
,
Carpanen
,
D.
,
Walker
,
R. W.
,
Koff
,
M. F.
,
Lenhoff
,
M. W.
,
Rozbruch
,
S. R.
,
Fragomen
,
A. T.
,
Dewan
,
Z.
,
Kirane
,
Y. M.
,
Cheah
,
K.
,
Dowell
,
J. K.
, and
Hillstrom
,
H. J.
,
2014
, “
Development and Validation of a Computational Model of the Knee Joint for the Evaluation of Surgical Treatments for Osteoarthritis
,”
Comput. Methods Biomech. Biomed. Eng.
,
17
(
13
), pp.
1502
1517
.10.1080/10255842.2014.899588
83.
Beck
,
P. R.
,
Thomas
,
A. L.
,
Farr
,
J.
,
Lewis
,
P. B.
, and
Cole
,
B. J.
,
2005
, “
Trochlear Contact Pressures After Anteromedialization of the Tibial Tubercle
,”
Am. J. Sports Med.
,
33
(
11
), pp.
1710
1715
.10.1177/0363546505278300
84.
Jackson
,
D. W.
,
Lalor
,
P. A.
,
Aberman
,
H. M.
, and
Simon
,
T. M.
,
2001
, “
Spontaneous Repair of Full-Thickness Defects of Articular Cartilage in a Goat Model
,”
J. Bone Jt. Surg.
,
83
(
1
), pp.
53
53
.10.2106/00004623-200101000-00008
85.
Halonen
,
K. S.
,
Mononen
,
M. E.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
,
Klodowski
,
A.
,
Kulmala
,
J.-P.
, and
Korhonen
,
R. K.
,
2016
, “
Importance of Patella, Quadriceps Forces, and Depthwise Cartilage Structure on Knee Joint Motion and Cartilage Response During Gait
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
071002
.10.1115/1.4033516
86.
Klets
,
O.
,
Mononen
,
M. E.
,
Tanska
,
P.
,
Nieminen
,
M. T.
,
Korhonen
,
R. K.
, and
Saarakkala
,
S.
,
2016
, “
Comparison of Different Material Models of Articular Cartilage in 3D Computational Modeling of the Knee: Data From the Osteoarthritis Initiative (Oai)
,”
J. Biomech.
49
(
16
), pp.
3891
3900
.10.1016/j.jbiomech.2016.10.025
87.
Mononen
,
M. E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2015
, “
Implementation of a Gait Cycle Loading Into Healthy and Meniscectomised Knee Joint Models With Fibril-Reinforced Articular Cartilage
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
2
), pp.
141
152
.10.1080/10255842.2013.783575
88.
Gomoll
,
A. H.
,
Madry
,
H.
,
Knutsen
,
G.
,
van Dijk
,
N.
,
Seil
,
R.
,
Brittberg
,
M.
, and
Kon
,
E.
,
2010
, “
The Subchondral Bone in Articular Cartilage Repair: Current Problems in the Surgical Management
,”
Knee Surg. Sports Traumat. Arthroscopy
,
18
(
4
), pp.
434
447
.10.1007/s00167-010-1072-x
89.
Radin
,
E. L.
, and
Rose
,
R. M.
,
1986
, “
Role of Subchondral Bone in the Initiation and Progression of Cartilage Damage
,”
Clin. Orthop. Relat. Res.
,
213
, pp.
34
40
.10.1097/00003086-198612000-00005
90.
Venäläinen
,
M.
,
Mononen
,
M.
,
Väänänen
,
S.
,
Jurvelin
,
J.
,
Töyräs
,
J.
,
Virén
,
T.
, and
Korhonen
,
R.
,
2016
, “
Effect of Bone Inhomogeneity on Tibiofemoral Contact Mechanics During Physiological Loading
,”
J. Biomech.
,
49
(
7
), pp.
1111
1120
.10.1016/j.jbiomech.2016.02.033
91.
Alexopoulos
,
L. G.
,
Haider
,
M. A.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2003
, “
Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
323
333
.10.1115/1.1579047
92.
Astephen
,
J. L.
,
Deluzio
,
K. J.
,
Caldwell
,
G. E.
, and
Dunbar
,
M. J.
,
2008
, “
Biomechanical Changes at the Hip, Knee, and Ankle Joints During Gait Are Associated With Knee Osteoarthritis Severity
,”
J. Orthop. Res.
,
26
(
3
), pp.
332
341
.10.1002/jor.20496
93.
Elias
,
J. J.
,
DesJardins
,
J. D.
,
Faust
,
A. F.
,
Lietman
,
S. A.
, and
Chao
,
E.
,
1999
, “
Size and Position of a Single Condyle Allograft Influence Knee Kinematics
,”
J. Orthop. Res.
,
17
(
4
), pp.
540
545
.10.1002/jor.1100170412
94.
Marchi
,
B. C.
, and
Arruda
,
E. M.
,
2015
, “
An Error-Minimizing Approach to Inverse Langevin Approximations
,”
Rheol. Acta
,
54
(
11–12
), pp.
887
902
.10.1007/s00397-015-0880-9
95.
Butler
,
D.
,
Sheh
,
M.
,
Stouffer
,
D.
,
Samaranayake
,
V.
, and
Levy
,
M. S.
,
1990
, “
Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments
,”
ASME J. Biomech. Eng.
,
112
(
1
), pp.
38
45
.10.1115/1.2891124
96.
Ma
,
J.
, and
Arruda
,
E. M.
,
2013
, “
A Micromechanical Viscoelastic Constitutive Model for Native and Engineered Anterior Cruciate Ligaments
,”
Computer Models in Biomechanics
,
Springer
,
Dordrecht, The Netherlands
, pp.
351
363
.
97.
McLean
,
S. G.
,
Mallett
,
K. F.
, and
Arruda
,
E. M.
,
2015
, “
Deconstructing the Anterior Cruciate Ligament: What We Know and Do Not Know About Function, Material Properties, and Injury Mechanics
,”
ASME J. Biomech. Eng.
,
137
(
2
), p.
020906
.10.1115/1.4029278
98.
Quapp
,
K.
, and
Weiss
,
J.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
,
120
(
6
), pp.
757
763
.10.1115/1.2834890
You do not currently have access to this content.