Abstract

Dynamic balance is controlled by lower-limb muscles and is more difficult to maintain during stair ascent compared to level walking. As a result, individuals with lower-limb amputations often have difficulty ascending stairs and are more susceptible to falls. The purpose of this study was to identify the biomechanical mechanisms used by individuals with and without amputation to control dynamic balance during stair ascent. Three-dimensional muscle-actuated forward dynamics simulations of amputee and nonamputee stair ascent were developed and contributions of individual muscles, the passive prosthesis, and gravity to the time rate of change of angular momentum were determined. The prosthesis replicated the role of nonamputee plantarflexors in the sagittal plane by contributing to forward angular momentum. The prosthesis largely replicated the role of nonamputee plantarflexors in the transverse plane but resulted in a greater change of angular momentum. In the frontal plane, the prosthesis and nonamputee plantarflexors contributed oppositely during the first half of stance while during the second half of stance, the prosthesis contributed to a much smaller extent. This resulted in altered contributions from the intact leg plantarflexors, vastii and hamstrings, and the intact and residual leg hip abductors. Therefore, prosthetic devices with altered contributions to frontal-plane angular momentum could improve balance control during amputee stair ascent and minimize necessary muscle compensations. In addition, targeted training could improve the force production magnitude and timing of muscles that regulate angular momentum to improve balance control.

References

1.
Kendell
,
C.
,
Lemaire
,
E. D.
,
Dudek
,
N. L.
, and
Kofman
,
J.
,
2010
, “
Indicators of Dynamic Stability in Transtibial Prosthesis Users
,”
Gait Posture
,
31
(
3
), pp.
375
379
.10.1016/j.gaitpost.2010.01.003
2.
Pickle
,
N. T.
,
Wilken
,
J. M.
,
Aldridge
,
J. M.
,
Neptune
,
R. R.
, and
Silverman
,
A. K.
,
2014
, “
Whole-Body Angular Momentum During Stair Walking Using Passive and Powered Lower-Limb Prostheses
,”
J. Biomech.
,
47
(
13
), pp.
3380
3389
.10.1016/j.jbiomech.2014.08.001
3.
Silverman
,
A. K.
,
Neptune
,
R. R.
,
Sinitski
,
E. H.
, and
Wilken
,
J. M.
,
2014
, “
Whole-Body Angular Momentum During Stair Ascent and Descent
,”
Gait Posture
,
39
(
4
), pp.
1109
1114
.10.1016/j.gaitpost.2014.01.025
4.
Vanicek
,
N.
,
Strike
,
S. C.
,
McNaughton
,
L.
, and
Polman
,
R.
,
2010
, “
Lower Limb Kinematic and Kinetic Differences Between Transtibial Amputee Fallers and Non-Fallers
,”
Prosthet. Orthot. Int.
,
34
(
4
), pp.
399
410
.10.3109/03093646.2010.480964
5.
Reeves
,
N. D.
,
Spanjaard
,
M.
,
Mohagheghi
,
A. A.
,
Baltzopoulos
,
V.
, and
Maganaris
,
C. N.
,
2008
, “
Influence of Light Handrail Use on the Biomechanics of Stair Negotiation in Old Age
,”
Gait Posture
,
28
(
2
), pp.
327
336
.10.1016/j.gaitpost.2008.01.014
6.
Reid
,
S. M.
,
Novak
,
A. C.
,
Brouwer
,
B.
, and
Costigan
,
P. A.
,
2011
, “
Relationship Between Stair Ambulation With and Without a Handrail and Centre of Pressure Velocities During Stair Ascent and Descent
,”
Gait Posture
,
34
(
4
), pp.
529
532
.10.1016/j.gaitpost.2011.07.008
7.
Hsue
,
B. J.
, and
Su
,
F. C.
,
2009
, “
Gait and Kinematics of the Trunk and Lower Extremities in Stair Ascent Using Quadricane in Healthy Subjects
,”
Gait Posture
,
29
(
1
), pp.
146
150
.10.1016/j.gaitpost.2008.06.001
8.
Hsue
,
B. J.
, and
Su
,
F. C.
,
2010
, “
The Effect of Cane Use Method on Center of Mass Displacement During Stair Ascent
,”
Gait Posture
,
32
(
4
), pp.
530
535
.10.1016/j.gaitpost.2010.07.015
9.
Neptune
,
R.
, and
Vistamehr
,
A.
,
2019
, “
Dynamic Balance During Human Movement: Measurement and Control Mechanisms
,”
ASME J. Biomech. Eng.
,
141
(
7
), p.
070801
.10.1115/1.4042170
10.
Herr
,
H.
, and
Popovic
,
M.
,
2008
, “
Angular Momentum in Human Walking
,”
J. Exp. Biol.
,
211
(
4
), pp.
467
481
.10.1242/jeb.008573
11.
Goswami
,
A.
, and
Kallem
,
V.
,
2004
, “
Rate of Change of Angular Momentum and Balance Maintenance of Biped Robots
,”
IEEE International Conference on Robotics and Automation
, New Orleans, LA, Apr. 26–May 1, pp.
3785
3790
.10.1109/ROBOT.2004.1308858
12.
Hofmann
,
A.
,
Popovic
,
M.
, and
Herr
,
H.
,
2009
, “
Exploiting Angular Momentum to Enhance Bipedal Center-of-Mass Control
,” IEEE International Conference on Robotics and Automation (
ICRA
), Vol.
1–7
, Kobe, Japan, May 12–17, pp.
2483
2489
.10.1109/ROBOT.2009.5152573
13.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum
,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vol.
1–4
, Las Vegas, NV, Oct. 27–31, pp.
1644
1650
.10.1109/IROS.2003.1248880
14.
Simoneau
,
G. G.
, and
Krebs
,
D. E.
,
2000
, “
Whole-Body Momentum During Gait: A Preliminary Study of Non-Fallers and Frequent Fallers
,”
J. Appl. Biomech.
,
16
(
1
), pp.
1
13
.10.1123/jab.16.1.1
15.
Pijnappels
,
M.
,
Bobbert
,
M. F.
, and
van Dieën
,
J. H.
,
2004
, “
Contribution of the Support Limb in Control of Angular Momentum After Tripping
,”
J. Biomech.
,
37
(
12
), pp.
1811
1818
.10.1016/j.jbiomech.2004.02.038
16.
Pijnappels
,
M.
,
Bobbert
,
M. F.
, and
van Dieën
,
J. H.
,
2005
, “
How Early Reactions in the Support Limb Contribute to Balance Recovery After Tripping
,”
J. Biomech.
,
38
(
3
), pp.
627
634
.10.1016/j.jbiomech.2004.03.029
17.
Pijnappels
,
M.
,
Bobbert
,
M. F.
, and
Dieën
,
J. H. V.
,
2005
, “
Push-Off Reactions in Recovery After Tripping Discriminate Young Subjects, Older Non-Fallers and Older Fallers
,”
Gait Posture
,
21
(
4
), pp.
388
394
.10.1016/j.gaitpost.2004.04.009
18.
van Dieen
,
J. H.
,
Spanjaard
,
M.
,
Konemann
,
R.
,
Bron
,
L.
, and
Pijnappels
,
M.
,
2007
, “
Balance Control in Stepping Down Expected and Unexpected Level Changes
,”
J. Biomech.
,
40
(
16
), pp.
3641
3649
.10.1016/j.jbiomech.2007.06.009
19.
Kent
,
J. A.
,
Takahashi
,
K. Z.
, and
Stergiou
,
N.
,
2019
, “
Uneven Terrain Exacerbates the Deficits of a Passive Prosthesis in the Regulation of Whole Body Angular Momentum in Individuals With a Unilateral Transtibial Amputation
,”
J. Neuroeng. Rehabil.
,
16
(
1
), p.
25
.10.1186/s12984-019-0497-9
20.
Yeates
,
K. H.
,
Segal
,
A. D.
,
Neptune
,
R. R.
, and
Klute
,
G. K.
,
2016
, “
Balance and Recovery on Coronally-Uneven and Unpredictable Terrain
,”
J. Biomech.
,
49
(
13
), pp.
2734
2740
.10.1016/j.jbiomech.2016.06.014
21.
Begue
,
J.
,
Peyrot
,
N.
,
Dalleau
,
G.
, and
Caderby
,
T.
,
2019
, “
Age-Related Changes in the Control of Whole-Body Angular Momentum During Stepping
,”
Exp. Gerontol.
,
127
, p.
110714
.10.1016/j.exger.2019.110714
22.
Bruijn
,
S. M.
,
Meyns
,
P.
,
Jonkers
,
I.
,
Kaat
,
D.
, and
Duysens
,
J.
,
2011
, “
Control of Angular Momentum During Walking in Children With Cerebral Palsy
,”
Res. Dev. Disabil.
,
32
(
6
), pp.
2860
2866
.10.1016/j.ridd.2011.05.019
23.
Nott
,
C. R.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2014
, “
Relationships Between Frontal-Plane Angular Momentum and Clinical Balance Measures During Post-Stroke Hemiparetic Walking
,”
Gait Posture
,
39
(
1
), pp.
129
134
.10.1016/j.gaitpost.2013.06.008
24.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2011
, “
Differences in Whole-Body Angular Momentum Between Below-Knee Amputees and Non-Amputees Across Walking Speeds
,”
J. Biomech.
,
44
(
3
), pp.
379
385
.10.1016/j.jbiomech.2010.10.027
25.
Miller
,
W. C.
,
Speechley
,
M.
, and
Deathe
,
B.
,
2001
, “
The Prevalence and Risk Factors of Falling and Fear of Falling Among Lower Extremity Amputees
,”
Arch. Phys. Med. Rehabil.
,
82
(
8
), pp.
1031
1037
.10.1053/apmr.2001.24295
26.
D'Andrea
,
S.
,
Wilhelm
,
N.
,
Silverman
,
A. K.
, and
Grabowski
,
A. M.
,
2014
, “
Does Use of a Powered Ankle-Foot Prosthesis Restore Whole-Body Angular Momentum During Walking at Different Speeds?
,”
Clin. Orthop. Relat. Res.
,
472
(
10
), pp.
3044
3054
.10.1007/s11999-014-3647-1
27.
Sheehan
,
R. C.
,
Beltran
,
E. J.
,
Dingwell
,
J. B.
, and
Wilken
,
J. M.
,
2015
, “
Mediolateral Angular Momentum Changes in Persons With Amputation During Perturbed Walking
,”
Gait Posture
,
41
(
3
), pp.
795
800
.10.1016/j.gaitpost.2015.02.008
28.
Pickle
,
N. T.
,
Wilken
,
J. M.
,
Aldridge Whitehead
,
J. M.
, and
Silverman
,
A. K.
,
2016
, “
Whole-Body Angular Momentum During Sloped Walking Using Passive and Powered Lower-Limb Prostheses
,”
J. Biomech.
,
49
(
14
), pp.
3397
3406
.10.1016/j.jbiomech.2016.09.010
29.
Sepp
,
L. A.
,
Baum
,
B. S.
,
Nelson-Wong
,
E.
, and
Silverman
,
A. K.
,
2019
, “
Dynamic Balance During Running Using Running-Specific Prostheses
,”
J. Biomech.
,
84
, pp.
36
45
.10.1016/j.jbiomech.2018.12.016
30.
Pickle
,
N. T.
,
Silverman
,
A. K.
,
Wilken
,
J. M.
, and
Fey
,
N. P.
,
2017
, “
Segmental Contributions to Sagittal-Plane Whole-Body Angular Momentum When Using Powered Compared to Passive Ankle-Foot Prostheses on Ramps
,” 2017 International Conference on Rehabilitation Robotics (
ICORR
), London, UK, July 17–20, pp.
1609
1614
.10.1109/ICORR.2017.8009478
31.
Gaffney
,
B. M. M.
,
Christiansen
,
C. L.
,
Murray
,
A. M.
, and
Davidson
,
B. S.
,
2018
, “
Trunk Movement Compensations and Corresponding Core Muscle Demand During Step Ambulation in People With Unilateral Transtibial Amputation
,”
J. Electromyogr. Kinesiol.
,
39
, pp.
16
25
.10.1016/j.jelekin.2018.01.002
32.
Neptune
,
R. R.
, and
McGowan
,
C. P.
,
2011
, “
Muscle Contributions to Whole-Body Sagittal Plane Angular Momentum During Walking
,”
J. Biomech.
,
44
(
1
), pp.
6
12
.10.1016/j.jbiomech.2010.08.015
33.
Neptune
,
R. R.
, and
McGowan
,
C. P.
,
2016
, “
Muscle Contributions to Frontal Plane Angular Momentum During Walking
,”
J. Biomech.
,
49
(
13
), pp.
2975
2981
.10.1016/j.jbiomech.2016.07.016
34.
Harper
,
N. G.
,
Wilken
,
J. M.
, and
Neptune
,
R. R.
,
2018
, “
Muscle Function and Coordination of Amputee Stair Ascent
,”
ASME J. Biomech. Eng.
,
140
(
12
), p. 121004.10.1115/1.4040772
35.
Harper
,
N. G.
,
Wilken
,
J. M.
, and
Neptune
,
R. R.
,
2018
, “
Muscle Function and Coordination of Stair Ascent
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011001
.10.1115/1.4037791
36.
Neptune
,
R. R.
,
Wright
,
I. C.
, and
Van Den Bogert
,
A. J.
,
2000
, “
A Method for Numerical Simulation of Single Limb Ground Contact Events: Application to Heel-Toe Running
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
(
4
), pp.
321
334
.10.1080/10255840008915275
37.
Mattes
,
S. J.
,
Martin
,
P. E.
, and
Royer
,
T. D.
,
2000
, “
Walking Symmetry and Energy Cost in Persons With Unilateral Transtibial Amputations: Matching Prosthetic and Intact Limb Inertial Properties
,”
Arch. Phys. Med. Rehabil.
,
81
(
5
), pp.
561
568
.10.1016/S0003-9993(00)90035-2
38.
Goffe
,
W. L.
,
Ferrier
,
G. D.
, and
Rogers
,
J.
,
1994
, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometrics
,
60
(
1–2
), pp.
65
99
.10.1016/0304-4076(94)90038-8
39.
Neptune
,
R. R.
,
Zajac
,
F. E.
, and
Kautz
,
S. A.
,
2004
, “
Muscle Force Redistributes Segmental Power for Body Progression During Walking
,”
Gait Posture
,
19
(
2
), pp.
194
205
.10.1016/S0966-6362(03)00062-6
40.
Lee
,
H. J.
, and
Chou
,
L. S.
,
2007
, “
Balance Control During Stair Negotiation in Older Adults
,”
J. Biomech.
,
40
(
11
), pp.
2530
2536
.10.1016/j.jbiomech.2006.11.001
41.
Lin
,
Y. C.
,
Fok
,
L. A.
,
Schache
,
A. G.
, and
Pandy
,
M. G.
,
2015
, “
Muscle Coordination of Support, Progression and Balance During Stair Ambulation
,”
J. Biomech.
,
48
(
2
), pp.
340
347
.10.1016/j.jbiomech.2014.11.019
42.
Pijnappels
,
M.
,
van der Burg
,
P. J. C. E.
,
Reeves
,
N. D.
, and
van Dieën
,
J. H.
,
2008
, “
Identification of Elderly Fallers by Muscle Strength Measures
,”
Eur. J. Appl. Physiol.
,
102
(
5
), pp.
585
592
.10.1007/s00421-007-0613-6
43.
Grabiner
,
M. D.
,
Koh
,
T. J.
,
Lundin
,
T. M.
, and
Jahnigen
,
D. W.
,
1993
, “
Kinematics of Recovery From a Stumble
,”
J. Gerontol.
,
48
(
3
), pp.
M97
M102
.10.1093/geronj/48.3.M97
44.
Vrieling
,
A. H.
,
van Keeken
,
H. G.
,
Schoppen
,
T.
,
Otten
,
E.
,
Hof
,
A. L.
,
Halbertsma
,
J. P.
, and
Postema
,
K.
,
2008
, “
Balance Control on a Moving Platform in Unilateral Lower Limb Amputees
,”
Gait Posture
,
28
(
2
), pp.
222
228
.10.1016/j.gaitpost.2007.12.002
45.
Jansen
,
K.
,
De Groote
,
F.
,
Duysens
,
J.
, and
Jonkers
,
I.
,
2014
, “
How Gravity and Muscle Action Control Mediolateral Center of Mass Excursion During Slow Walking: A Simulation Study
,”
Gait Posture
,
39
(
1
), pp.
91
97
.10.1016/j.gaitpost.2013.06.004
46.
Pandy
,
M. G.
,
Lin
,
Y. C.
, and
Kim
,
H. J.
,
2010
, “
Muscle Coordination of Mediolateral Balance in Normal Walking
,”
J. Biomech.
,
43
(
11
), pp.
2055
2064
.10.1016/j.jbiomech.2010.04.010
47.
Silverman
,
A. K.
, and
Neptune
,
R. R.
,
2012
, “
Muscle and Prosthesis Contributions to Amputee Walking Mechanics: A Modeling Study
,”
J. Biomech.
,
45
(
13
), pp.
2271
2278
.10.1016/j.jbiomech.2012.06.008
48.
Curtze
,
C.
,
Hof
,
A. L.
,
Postema
,
K.
, and
Otten
,
B.
,
2012
, “
The Relative Contributions of the Prosthetic and Sound Limb to Balance Control in Unilateral Transtibial Amputees
,”
Gait Posture
,
36
(
2
), pp.
276
281
.10.1016/j.gaitpost.2012.03.010
49.
Novak
,
A. C.
, and
Brouwer
,
B.
,
2011
, “
Sagittal and Frontal Lower Limb Joint Moments During Stair Ascent and Descent in Young and Older Adults
,”
Gait Posture
,
33
(
1
), pp.
54
60
.10.1016/j.gaitpost.2010.09.024
50.
Miller
,
S. E.
,
Segal
,
A. D.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2018
, “
Hip Recovery Strategy Used by Below-Knee Amputees Following Mediolateral Foot Perturbations
,”
J. Biomech.
,
76
, pp.
61
67
.10.1016/j.jbiomech.2018.05.023
51.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking. Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.10.1016/S0966-6362(02)00068-1
52.
Powers
,
C. M.
,
Boyd
,
L. A.
,
Torburn
,
L.
, and
Perry
,
J.
,
1997
, “
Stair Ambulation in Persons With Transtibial Amputation: An Analysis of the Seattle LightFoot
,”
J. Rehabil. Res. Dev.
,
34
(
1
), pp.
9
18
.https://pdfs.semanticscholar.org/bdb9/7024f138d62df664e3c985d0499440d80714.pdf
53.
Silverman
,
A. K.
,
Fey
,
N. P.
,
Portillo
,
A.
,
Walden
,
J. G.
,
Bosker
,
G.
, and
Neptune
,
R. R.
,
2008
, “
Compensatory Mechanisms in Below-Knee Amputee Gait in Response to Increasing Steady-State Walking Speeds
,”
Gait Posture
,
28
(
4
), pp.
602
609
.10.1016/j.gaitpost.2008.04.005
You do not currently have access to this content.