Abstract

Treatment of atrial fibrillation by cryoablation of the pulmonary vein (PV) suffers from an inability to assess probe contact, tissue thickness, and freeze completion through the wall. Unfortunately, clinical imaging cannot be used for this purpose as these techniques have resolutions similar in scale (∼1 to 2 mm) to PV thickness and therefore are unable to resolve changes within the PV during treatment. Here, a microthermal sensor based on the “3ω” technique which has been used for thin biological systems is proposed as a potential solution and tested for a cryoablation scenario. First, the sensor was modified from a linear format to a serpentine format for integration onto a flexible balloon. Next, using numerical analyses, the ability of the modified sensor on a flat substrate was studied to differentiate measurements in limiting cases of ice, water, and fat. These numerical results were then complemented by experimentation by micropatterning the serpentine sensor onto a flat substrate and onto a flexible balloon. In both formats (flat and balloon), the serpentine sensor was experimentally shown to: (1) identify tissue contact versus fluid, (2) distinguish tissue thickness in the 0.5 to 2 mm range, and (3) measure the initiation and completion of freezing as previously reported for a linear sensor. This study demonstrates proof of principle that a serpentine 3ω sensor on a balloon can monitor tissue contact, thickness, and phase change which is relevant to cryo and other focal thermal treatments of PV to treat atrial fibrillation.

References

1.
Chu
,
K. F.
, and
Dupuy
,
D. E.
,
2014
, “
Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy
,”
Nat. Rev. Cancer
,
14
(
3
), pp.
199
208
.10.1038/nrc3672
2.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5&6
), p.
31
.10.1615/CritRevBiomedEng.v31.i56.10
3.
Hoffmann
,
N. E.
, and
Bischof
,
J. C.
,
2002
, “
The Cryobiology of Cryosurgical Injury
,”
Urology
,
60
(
2
), pp.
40
49
.10.1016/S0090-4295(02)01683-7
4.
Andreano
,
A.
, and
Brace
,
C. L.
,
2013
, “
A Comparison of Direct Heating During Radiofrequency and Microwave Ablation in Ex Vivo Liver
,”
Cardiovasc. Interventional Radiol.
,
36
(
2
), pp.
505
511
.10.1007/s00270-012-0405-1
5.
Bruce
,
C. J.
,
Packer
,
D. L.
, and
Seward
,
J. B.
,
1999
, “
Intracardiac Doppler Hemodynamics and Flow: New Vector, Phased-Array Ultrasound-Tipped Catheter
,”
Am. J. Cardiol.
,
83
(
10
), pp.
1509
1512
.10.1016/S0002-9149(99)00136-8
6.
Onik
,
G. M.
,
Cohen
,
J. K.
,
Reyes
,
G. D.
,
Rubinsky
,
B.
,
Chang
,
Z.
, and
Baust
,
J.
,
1993
, “
Transrectal Ultrasound-Guided Percutaneous Radical Cryosurgical Ablation of the Prostate
,”
Cancer
,
72
(
4
), pp.
1291
1299
.10.1002/1097-0142(19930815)72:4<1291::aid-cncr2820720423>3.0.co;2-i
7.
Onik
,
G.
,
Rubinsky
,
B.
,
Zemel
,
R.
,
Weaver
,
L.
,
Diamond
,
D.
,
Cobb
,
C.
, and
Porterfield
,
B.
,
1991
, “
Ultrasound-Guided Hepatic Cryosurgery in the Treatment of Metastatic Colon Carcinoma. Preliminary Results
,”
Cancer
,
67
(
4
), pp.
901
907
.10.1002/1097-0142(19910215)67:4<901::aid-cncr2820670408>3.0.co;2-z
8.
Gilbert
,
J. C.
,
Onik
,
G. M.
,
Hoddick
,
W. K.
, and
Rubinsky
,
B.
,
1985
, “
Real Time Ultrasonic Monitoring of Hepatic Cryosurgery
,”
Cryobiology
,
22
(
4
), pp.
319
330
.10.1016/0011-2240(85)90179-8
9.
Onik
,
G.
,
Cooper
,
C.
,
Goldberg
,
H. I.
,
Moss
,
A. A.
,
Rubinsky
,
B.
, and
Christianson
,
M.
,
1984
, “
Ultrasonic Characteristics of Frozen Liver
,”
Cryobiology
,
21
(
3
), pp.
321
328
.10.1016/0011-2240(84)90327-4
10.
Sandison
,
G. A.
,
Loye
,
M. P.
,
Rewcastle
,
J. C.
,
Hahn
,
L. J.
,
Saliken
,
J. C.
,
McKinnon
,
J. G.
, and
Donnelly
,
B. J.
,
1998
, “
X-Ray CT Monitoring of Iceball Growth and Thermal Distribution During Cryosurgery
,”
Phys. Med. Biol.
,
43
(
11
), pp.
3309
3324
.10.1088/0031-9155/43/11/010
11.
Schwartz
,
B. F.
,
Rewcastle
,
J. C.
,
Powell
,
T.
,
Whelan
,
C.
,
Manny
,
T.
, Jr.
, and
Vestal
,
J. C.
,
2006
, “
Cryoablation of Small Peripheral Renal Masses: A Retrospective Analysis
,”
Urology
,
68
(
1
), pp.
14
18
.10.1016/j.urology.2006.03.067
12.
Shenoi
,
M. M.
,
Zhang
,
X.
,
Venkatasubramanian
,
R. T.
,
Grassl
,
E. D.
,
George
,
L.
,
Schmechel
,
S.
,
Coad
,
J. E.
, and
Bischof
,
J. C.
,
2009
, “
CT Visualization and Histopathological Assessment of Cryoablation in Pulmonary Veins
,”
ASME
Paper No. SBC2009-206640.10.1115/SBC2009-206640
13.
Butts
,
K.
,
Sinclair
,
J.
,
Daniel
,
B. L.
,
Wansapura
,
J.
, and
Pauly
,
J. M.
,
2001
, “
Temperature Quantitation and Mapping of Frozen Tissue
,”
J. Magn. Reson. Imaging
,
13
(
1
), pp.
99
104
.10.1002/1522-2586(200101)13:1<99::aid-jmri1015>3.0.co;2-o
14.
Daniel
,
B. L.
,
Butts
,
K.
, and
Block
,
W. F.
,
1999
, “
Magnetic Resonance Imaging of Frozen Tissues: Temperature-Dependent MR Signal Characteristics and Relevance for MR Monitoring of Cryosurgery
,”
Magn. Reson. Med.
,
41
(
3
), pp.
627
630
.10.1002/(SICI)1522-2594(199903)41:3<627::AID-MRM28>3.0.CO;2-Q
15.
Gilbert
,
J. C.
,
Rubinsky
,
B.
,
Roos
,
M. S.
,
Wong
,
S. T. S.
, and
Brennan
,
K. M.
,
1993
, “
MRI-Monitored Cryosurgery in the Rabbit Brain
,”
Magn. Reson. Imaging
,
11
(
8
), pp.
1155
1164
.10.1016/0730-725X(93)90243-7
16.
Pease
,
G. R.
,
Wong
,
S. T. S.
,
Roos
,
M. S.
, and
Rubinsky
,
B.
,
1995
, “
Mr Image-Guided Control of Cryosurgery
,”
J. Magn. Reson. Imaging
,
5
(
6
), pp.
753
760
.10.1002/jmri.1880050623
17.
Wansapura
,
J. P.
,
Daniel
,
B. L.
,
Vigen
,
K. K.
, and
Butts
,
K.
,
2005
, “
In Vivo MR Thermometry of Frozen Tissue Using R2* and Signal Intensity1
,”
Acad. Radiol.
,
12
(
9
), pp.
1080
1084
.10.1016/j.acra.2005.06.006
18.
Haïssaguerre
,
M.
,
Gencel
,
L.
,
Fischer
,
B.
,
Le Métayer
,
P.
,
Poquet
,
F.
,
Marcus
,
F. I.
, and
Cleménty
,
J.
,
1994
, “
Successful Catheter Ablation of Atrial Fibrillation
,”
J. Cardiovasc. Electrophysiol.
,
5
(
12
), pp.
1045
1052
.10.1111/j.1540-8167.1994.tb01146.x
19.
Avitall
,
B.
,
Urboniene
,
D.
,
Rozmus
,
G.
,
Lafontaine
,
D.
,
Helms
,
R.
, and
Urbonas
,
A.
,
2003
, “
New Cryotechnology for Electrical Isolation of the Pulmonary Veins
,”
J. Cardiovasc. Electrophysiol.
,
14
(
3
), pp.
281
286
.10.1046/j.1540-8167.2003.02357.x
20.
Kuck
,
K.-H.
, and
Fürnkranz
,
A.
,
2010
, “
Cryoballoon Ablation of Atrial Fibrillation
,”
J. Cardiovasc. Electrophysiol.
,
21
(
12
), pp.
1427
1431
.10.1111/j.1540-8167.2010.01944.x
21.
Kojodjojo
,
P.
,
O'Neill
,
M. D.
,
Lim
,
P. B.
,
Malcolm-Lawes
,
L.
,
Whinnett
,
Z. I.
,
Salukhe
,
T. V.
,
Linton
,
N. W.
,
Lefroy
,
D.
,
Mason
,
A.
,
Wright
,
I.
,
Peters
,
N. S.
,
Kanagaratnam
,
P.
, and
Davies
,
D. W.
,
2010
, “
Pulmonary Venous Isolation by Antral Ablation With a Large Cryoballoon for Treatment of Paroxysmal and Persistent Atrial Fibrillation: Medium-Term Outcomes and Non-Randomised Comparison With Pulmonary Venous Isolation by Radiofrequency Ablation
,”
Heart
,
96
(
17
), pp.
1379
1384
.10.1136/hrt.2009.192419
22.
Haeusler
,
K. G.
,
Koch
,
L.
,
Ueberreiter
,
J.
,
Endres
,
M.
,
Schultheiss
,
H.-P.
,
Heuschmann
,
P. U.
,
Schirdewan
,
A.
, and
Fiebach
,
J. B.
,
2010
, “
Stroke Risk Associated With Balloon Based Catheter Ablation for Atrial Fibrillation: Rationale and Design of the MACPAF Study
,”
BMC Neurol.
,
10
(
1
), p.
63
.10.1186/1471-2377-10-63
23.
Reddy
,
V. Y.
,
Neuzil
,
P.
,
Themistoclakis
,
S.
,
Danik
,
S. B.
,
Bonso
,
A.
,
Rossillo
,
A.
,
Raviele
,
A.
,
Schweikert
,
R.
,
Ernst
,
S.
,
Kuck
,
K.-H.
, and
Natale
,
A.
,
2009
, “
Visually-Guided Balloon Catheter Ablation of Atrial Fibrillation Experimental Feasibility and First-in-Human Multicenter Clinical Outcome
,”
Circulation
,
120
(
1
), pp.
12
20
.10.1161/CIRCULATIONAHA.108.840587
24.
Doppalapudi
,
H.
,
Yamada
,
T.
, and
Kay
,
G. N.
,
2009
, “
Complications During Catheter Ablation of Atrial Fibrillation: Identification and Prevention
,”
Heart Rhythm
,
6
(
12
), pp.
S18
S25
.10.1016/j.hrthm.2009.07.025
25.
Calkins
,
H.
,
Reynolds
,
M. R.
,
Spector
,
P.
,
Sondhi
,
M.
,
Xu
,
Y.
,
Martin
,
A.
,
Williams
,
C. J.
, and
Sledge
,
I.
,
2009
, “
Treatment of Atrial Fibrillation With Antiarrhythmic Drugs or Radiofrequency Ablation Two Systematic Literature Reviews and Meta-Analyses
,”
Circ.: Arrhythmia Electrophysiol.
,
2
(
4
), pp.
349
361
.10.1161/CIRCEP.108.824789
26.
Haíssaguerre
,
M.
,
Jaís
,
P.
,
Shah
,
D. C.
,
Gencel
,
L.
,
Pradeau
,
V.
,
Garrigues
,
S.
,
Chouairi
,
S.
,
Hocini
,
M.
,
Le Métayer
,
P.
,
Roudaut
,
R.
, and
Clémenty
,
J.
,
1996
, “
Right and Left Atrial Radiofrequency Catheter Therapy of Paroxysmal Atrial Fibrillation
,”
J. Cardiovasc. Electrophysiol.
,
7
(
12
), pp.
1132
1144
.10.1111/j.1540-8167.1996.tb00492.x
27.
Malmborg
,
H.
,
Lönnerholm
,
S.
, and
Blomström-Lundqvist
,
C.
,
2008
, “
Acute and Clinical Effects of Cryoballoon Pulmonary Vein Isolation in Patients With Symptomatic Paroxysmal and Persistent Atrial Fibrillation
,”
Europace
,
10
(
11
), pp.
1277
1280
.10.1093/europace/eun286
28.
Ahmed
,
H.
,
Neuzil
,
P.
,
d'Avila
,
A.
,
Cha
,
Y.-M.
,
Laragy
,
M.
,
Mares
,
K.
,
Brugge
,
W. R.
,
Forcione
,
D. G.
,
Ruskin
,
J. N.
,
Packer
,
D. L.
, and
Reddy
,
V. Y.
,
2009
, “
The Esophageal Effects of Cryoenergy During Cryoablation for Atrial Fibrillation
,”
Heart Rhythm
,
6
(
7
), pp.
962
969
.10.1016/j.hrthm.2009.03.051
29.
Kuck
,
K.-H.
,
Fürnkranz
,
A.
,
Chun
,
K. R. J.
,
Metzner
,
A.
,
Ouyang
,
F.
,
Schlüter
,
M.
,
Elvan
,
A.
,
Lim
,
H. W.
,
Kueffer
,
F. J.
,
Arentz
,
T.
,
Albenque
,
J.-P.
,
Tondo
,
C.
,
Kühne
,
M.
,
Sticherling
,
C.
, and
Brugada
,
J.
,
2016
, “
Cryoballoon or Radiofrequency Ablation for Symptomatic Paroxysmal Atrial Fibrillation: Reintervention, Rehospitalization, and Quality-of-Life Outcomes in the FIRE AND ICE Trial
,”
Eur. Heart J.
,
37
(
38
), pp.
2858
2865
.10.1093/eurheartj/ehw285
30.
Packer
,
D. L.
,
Kowal
,
R. C.
,
Wheelan
,
K. R.
,
Irwin
,
J. M.
,
Champagne
,
J.
,
Guerra
,
P. G.
,
Dubuc
,
M.
,
Reddy
,
V.
,
Nelson
,
L.
,
Holcomb
,
R. G.
,
Lehmann
,
J. W.
,
Ruskin
,
J. N.
, and
STOP AF Cryoablation Investigators
,
2013
, “
Cryoballoon Ablation of Pulmonary Veins for Paroxysmal Atrial Fibrillation: First Results of the North American Arctic Front (STOP AF) Pivotal Trial
,”
J. Am. Coll. Cardiol.
,
61
(
16
), pp.
1713
1723
.10.1016/j.jacc.2012.11.064
31.
Lalonde
,
J.-P.
,
Groves
,
R. E.
,
Laske
,
T. G.
,
Iaizzo
,
P. A.
, and
Bischof
,
J. C.
,
2015
, “
Feedback System for Cryoablation of Cardiac Tissue
,” Patent No.
US20150119868A1
. https://patents.google.com/patent/US20150119868A1/en
32.
Cahill
,
D. G.
, and
Pohl
,
R. O.
,
1987
, “
Thermal Conductivity of Amorphous Solids Above the Plateau
,”
Phys. Rev. B
,
35
(
8
), pp.
4067
4073
.10.1103/PhysRevB.35.4067
33.
Hodges
,
W.
, and
Dames
,
C.
,
2019
, “
A Multi-Frequency 3ω Method for Tracking Moving Phase Boundaries
,”
Rev. Sci. Instrum.
, 90(
9
), p.
094903
.10.1063/1.5096358
34.
Zhang
,
Y.
,
Wu
,
C.
, and
Borca-Tasciuc
,
T.
,
2020
, “
Theoretical Modeling of a Thermal Wave Technique to Determine the Extent of the Freezing Region Surrounding a Cryoprobe
,”
J. Appl. Phys.
, 127(
18
), p.
185101
.10.1063/1.5140445
35.
Lubner
,
S. D.
,
Choi
,
J.
,
Wehmeyer
,
G.
,
Waag
,
B.
,
Mishra
,
V.
,
Natesan
,
H.
,
Bischof
,
J. C.
, and
Dames
,
C.
,
2015
, “
Reusable bi-Directional 3ω Sensor to Measure Thermal Conductivity of 100-μm Thick Biological Tissues
,”
Rev. Sci. Instrum.
,
86
(
1
), p.
014905
.10.1063/1.4905680
36.
Natesan
,
H.
,
Hodges
,
W.
,
Choi
,
J.
,
Lubner
,
S.
,
Dames
,
C.
, and
Bischof
,
J.
,
2016
, “
A Micro-Thermal Sensor for Focal Therapy Applications
,”
Sci. Rep.
,
6
(
1
), p.
21395
.10.1038/srep21395
37.
Tian
,
L.
,
Li
,
Y.
,
Webb
,
R. C.
,
Krishnan
,
S.
,
Bian
,
Z.
,
Song
,
J.
,
Ning
,
X.
,
Crawford
,
K.
,
Kurniawan
,
J.
,
Bonifas
,
A.
,
Ma
,
J.
,
Liu
,
Y.
,
Xie
,
X.
,
Chen
,
J.
,
Liu
,
Y.
,
Shi
,
Z.
,
Wu
,
T.
,
Ning
,
R.
,
Li
,
D.
,
Sinha
,
S.
,
Cahill
,
D. G.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Flexible and Stretchable 3ω Sensors for Thermal Characterization of Human Skin
,”
Adv. Funct. Mater.
,
27
(
26
), p.
1701282
.10.1002/adfm.201701282
38.
Webb
,
R. C.
,
Pielak
,
R. M.
,
Bastien
,
P.
,
Ayers
,
J.
,
Niittynen
,
J.
,
Kurniawan
,
J.
,
Manco
,
M.
,
Lin
,
A.
,
Cho
,
N. H.
,
Malyrchuk
,
V.
,
Balooch
,
G.
, and
Rogers
,
J. A.
,
2015
, “
Thermal Transport Characteristics of Human Skin Measured In Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators
,”
PLoS One
,
10
(
2
), p.
e0118131
.10.1371/journal.pone.0118131
39.
Lee
,
S. P.
,
Klinker
,
L. E.
,
Ptaszek
,
L.
,
Work
,
J.
,
Liu
,
C.
,
Quivara
,
F.
,
Webb
,
C.
,
Dagdeviren
,
C.
,
Wright
,
J. A.
,
Ruskin
,
J. N.
,
Slepian
,
M.
,
Huang
,
Y.
,
Mansour
,
M.
,
Rogers
,
J. A.
, and
Ghaffari
,
R.
,
2015
, “
Catheter-Based Systems With Integrated Stretchable Sensors and Conductors in Cardiac Electrophysiology
,”
Proc. IEEE
,
103
(
4
), pp.
682
689
.10.1109/JPROC.2015.2401596
40.
Klinker
,
L.
,
Lee
,
S.
,
Work
,
J.
,
Wright
,
J.
,
Ma
,
Y.
,
Ptaszek
,
L.
,
Webb
,
R. C.
,
Liu
,
C.
,
Sheth
,
N.
,
Mansour
,
M.
,
Rogers
,
J. A.
,
Huang
,
Y.
,
Chen
,
H.
, and
Ghaffari
,
R.
,
2015
, “
Balloon Catheters With Integrated Stretchable Electronics for Electrical Stimulation, Ablation and Blood Flow Monitoring
,”
Extreme Mech. Lett.
,
3
, pp.
45
54
.10.1016/j.eml.2015.02.005
41.
Webb
,
R. C.
,
Bonifas
,
A. P.
,
Behnaz
,
A.
,
Zhang
,
Y.
,
Yu
,
K. J.
,
Cheng
,
H.
,
Shi
,
M.
,
Bian
,
Z.
,
Liu
,
Z.
,
Kim
,
Y.-S.
,
Yeo
,
W.-H.
,
Park
,
J. S.
,
Song
,
J.
,
Li
,
Y.
,
Huang
,
Y.
,
Gorbach
,
A. M.
, and
Rogers
,
J. A.
,
2013
, “
Ultrathin Conformal Devices for Precise and Continuous Thermal Characterization of Human Skin
,”
Nat. Mater.
,
12
(
11
), pp.
938
944
.10.1038/nmat3755
42.
Kim
,
D.-H.
,
Lu
,
N.
,
Ghaffari
,
R.
,
Kim
,
Y.-S.
,
Lee
,
S. P.
,
Xu
,
L.
,
Wu
,
J.
,
Kim
,
R.-H.
,
Song
,
J.
,
Liu
,
Z.
,
Viventi
,
J.
,
de Graff
,
B.
,
Elolampi
,
B.
,
Mansour
,
M.
,
Slepian
,
M. J.
,
Hwang
,
S.
,
Moss
,
J. D.
,
Won
,
S.-M.
,
Huang
,
Y.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2011
, “
Materials for Multifunctional Balloon Catheters With Capabilities in Cardiac Electrophysiological Mapping and Ablation Therapy
,”
Nat. Mater.
,
10
(
4
), pp.
316
323
.10.1038/nmat2971
43.
Dames
,
C.
,
2013
, “
Measuring the Thermal Conducitivity of Thin Films: 3 Omega and Related Electrothermal Methods
,”
Annu. Rev. Heat Transfer
,
16
(
1
), pp.
7
49
.10.1615/AnnualRevHeatTransfer.v16.20
44.
Mishra
,
V.
,
Hardin
,
C. L.
,
Garay
,
J. E.
, and
Dames
,
C.
,
2015
, “
A 3 Omega Method to Measure an Arbitrary Anisotropic Thermal Conductivity Tensor
,”
Rev. Sci. Instrum.
,
86
(
5
), p.
054902
.10.1063/1.4918800
45.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
223
241
.10.1115/1.1454111
46.
Dames
,
C.
, and
Chen
,
G.
,
2005
, “
1ω,2ω, and 3ω Methods for Measurements of Thermal Properties
,”
Rev. Sci. Instrum.
,
76
(
12
), p.
124902
.10.1063/1.2130718
47.
Valvano
,
J. W.
,
2011
, “
Tissue Thermal Properties and Perfusion
,”
Optical-Thermal Response of Laser Irradiated Tissue
,
A. J.
Welch
,
M. J. C.
van Gemert
, eds., 2nd ed.,
Springer
, Berlin, pp.
455
485
.
48.
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ, p.
2249
.
49.
Vargaftik
,
N. B.
,
1993
,
Handbook of Thermal Conductivity of Liquids and Gases
,
CRC Press
, Boca Raton, FL, p.
362
.
50.
Kim
,
Y.-H.
,
Marom
,
E. M.
,
Herndon
,
J. E.
, and
McAdams
,
H. P.
,
2005
, “
Pulmonary Vein Diameter, Cross-Sectional Area, and Shape: CT Analysis
,”
Radiology
,
235
(
1
), pp.
43
49
; discussion 49–50.10.1148/radiol.2351032106
51.
Davalos
,
R.
, and
Rubinsky
,
B.
,
2011
, “
Tissue Ablation With Irreversible Electroporation
,” Patent No.
US8048067 B2
.10.1007/s10439-005-8981-8
52.
Sugrue
,
A.
,
Maor
,
E.
,
Ivorra
,
A.
,
Vaidya
,
V.
,
Witt
,
C.
,
Kapa
,
S.
, and
Asirvatham
,
S.
,
2018
, “
Irreversible Electroporation for the Treatment of Cardiac Arrhythmias
,”
Expert Rev. Cardiovasc. Ther.
,
16
(
5
), pp.
349
360
.10.1080/14779072.2018.1459185
You do not currently have access to this content.