Abstract

The constitutive equation used to characterize and model spinal tissues can significantly influence the conclusions from experimental and computational studies. Therefore, researchers must make critical judgments regarding the balance of computational efficiency and predictive accuracy necessary for their purposes. The objective of this study is to quantitatively compare the fitting and prediction accuracy of linear viscoelastic (LV), quasi-linear viscoelastic (QLV), and (fully) nonlinear viscoelastic (NLV) modeling of spinal-cord-pia-arachnoid-construct (SCPC), isolated cord parenchyma, and isolated pia-arachnoid-complex (PAC) mechanics in order to better inform these judgements. Experimental data collected during dynamic cyclic testing of each tissue condition were used to fit each viscoelastic formulation. These fitted models were then used to predict independent experimental data from stress-relaxation testing. Relative fitting accuracy was found not to directly reflect relative predictive accuracy, emphasizing the need for material model validation through predictions of independent data. For the SCPC and isolated cord, the NLV formulation best predicted the mechanical response to arbitrary loading conditions, but required significantly greater computational run time. The mechanical response of the PAC under arbitrary loading conditions was best predicted by the QLV formulation.

References

1.
Jin
,
X.
,
Mao
,
H.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2014
, “
Constitutive Modeling of Pia-Arachnoid Complex
,”
Ann. Biomed. Eng.
,
42
(
4
), pp.
812
821
.10.1007/s10439-013-0948-6
2.
Cheng
,
S.
,
Clarke
,
E. C.
, and
Bilston
,
L. E.
,
2008
, “
Rheological Properties of the Tissues of the Central Nervous System: A Review
,”
Med. Eng. Phys.
,
30
(
10
), pp.
1318
1337
.10.1016/j.medengphy.2008.06.003
3.
Ramo
,
N. L.
,
Troyer
,
K. L.
, and
Puttlitz
,
C. M.
,
2018
, “
Viscoelasticity of Spinal Cord and Meningeal Tissues
,”
Acta Biomater.
,
75
, pp.
253
262
.10.1016/j.actbio.2018.05.045
4.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2001
, “
Comparison of Spinal Cord Gray Matter and White Matter Softness: Measurement by Pipette Aspiration Method
,”
J. Neurosurg.
,
95
(
2
), pp.
221
224
.10.3171/spi.2001.95.2.0221
5.
Koser
,
D. E.
,
Moeendarbary
,
E.
,
Hanne
,
J.
,
Kuerten
,
S.
, and
Franze
,
K.
,
2015
, “
CNS Cell Distribution and Axon Orientation Determine Local Spinal Cord Mechanical Properties
,”
Biophys. J.
,
108
(
9
), pp.
2137
2147
.10.1016/j.bpj.2015.03.039
6.
Tunturi
,
A. R.
,
1980
, “
Viscoelasticity of Dog Spinal Cord
,”
Physiol. Chem. Phys.
,
12
(
4
), pp.
373
378
.http://www.ncbi.nlm.nih.gov/pubmed/7454859
7.
Chang
,
G. L.
,
Hung
,
T. K.
, and
Feng
,
W. W.
,
1988
, “
An In-Vivo Measurement and Analysis of Viscoelastic Properties of the Spinal Cord of Cats
,”
ASME J. Biomech. Eng.
,
110
(
2
), pp.
115
122
.10.1115/1.3108415
8.
Bilston
,
L. E.
, and
Thibault
,
L. E.
,
1996
, “
The Mechanical Properties of the Human Cervical Spinal Cord In Vitro
,”
Ann. Biomed. Eng.
,
24
(
1
), pp.
67
74
.10.1007/BF02770996
9.
Fiford
,
R. J.
, and
Bilston
,
L. E.
,
2005
, “
The Mechanical Properties of Rat Spinal Cord In Vitro
,”
J. Biomech.
,
38
(
7
), pp.
1509
1515
.10.1016/j.jbiomech.2004.07.009
10.
Clarke
,
E. C.
,
Cheng
,
S.
, and
Bilston
,
L. E.
,
2009
, “
The Mechanical Properties of Neonatal Rat Spinal Cord In Vitro, and Comparisons With Adult
,”
J. Biomech.
,
42
(
10
), pp.
1397
1402
.10.1016/j.jbiomech.2009.04.008
11.
Shetye
,
S. S.
,
Troyer
,
K. L.
,
Streijger
,
F.
,
Lee
,
J. H. T.
,
Kwon
,
B. K.
,
Cripton
,
P. A.
, and
Puttlitz
,
C. M.
,
2014
, “
Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord
,”
Acta Biomater.
,
10
(
2
), pp.
792
797
.10.1016/j.actbio.2013.10.038
12.
Sparrey
,
C. J.
, and
Keaveny
,
T. M.
,
2011
, “
Compression Behavior of Porcine Spinal Cord White Matter
,”
J. Biomech.
,
44
(
6
), pp.
1078
1082
.10.1016/j.jbiomech.2011.01.035
13.
Ichihara
,
K.
,
Taguchi
,
T.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2003
, “
Mechanism of the Spinal Cord Injury and the Cervical Spondylotic Myelopathy: New Approach Based on the Mechanical Features of the Spinal Cord White and Gray Matter
,”
J. Neurosurg.
,
99
(
3
), pp.
278
285
.10.3171/spi.2003.99.3.0278
14.
Ramo
,
N. L.
,
Shetye
,
S. S.
,
Streijger
,
F.
,
Lee
,
J. H. T.
,
Troyer
,
K. L.
,
Kwon
,
B. K.
,
Cripton
,
P.
, and
Puttlitz
,
C. M.
,
2018
, “
Comparison of In Vivo and Ex Vivo Viscoelastic Behavior of the Spinal Cord
,”
Acta Biomater.
,
68
, pp.
78
89
.10.1016/j.actbio.2017.12.024
15.
Hung
,
T. K.
,
Chang
,
G. L.
,
Chang
,
J. L.
, and
Albin
,
M. S.
,
1981
, “
Stress-Strain Relationship and Neurological Sequelae of Uniaxial Elongation of the Spinal Cord of Cats
,”
Surg. Neurol.
,
15
(
6
), pp.
471
476
.10.1016/S0090-3019(81)80043-2
16.
Hung
,
T. K.
,
Chang
,
G. L.
,
Lin
,
H. S.
,
Walter
,
F. R.
, and
Bunegin
,
L.
,
1981
, “
Stress-Strain Relationship of the Spinal Cord of Anesthetized Cats
,”
J. Biomech.
,
14
(
4
), pp.
269
276
.10.1016/0021-9290(81)90072-5
17.
Hung
,
T. K.
, and
Chang
,
G. L.
,
1981
, “
Biomechanical and Neurological Response of the Spinal Cord of a Puppy to Uniaxial Tension
,”
ASME J. Biomech. Eng.
,
103
(
1
), pp.
43
47
.10.1115/1.3138244
18.
Fradet
,
L.
,
Cliche
,
F.
,
Petit
,
Y.
,
Mac-Thiong
,
J.-M.
, and
Arnoux
,
P.-J.
,
2016
, “
Strain Rate Dependent Behavior of the Porcine Spinal Cord Under Transverse Dynamic Compression
,”
Proc. Inst. Mech. Eng., Part H
,
230
(
9
), pp.
858
866
.10.1177/0954411916655373
19.
Kimpara
,
H.
,
Nakahira
,
Y.
,
Iwamoto
,
M.
,
Miki
,
K.
,
Ichihara
,
K.
,
Kawano
,
S.
, and
Taguchi
,
T.
,
2006
, “
Investigation of Anteroposterior Head-Neck Responses During Severe Frontal Impacts Using a Brain-Spinal Cord Complex FE Model
,”
Stapp Car Crash J.
,
50
, pp.
509
544
.https://www.ncbi.nlm.nih.gov/pubmed/17311175
20.
Ichihara
,
K.
,
Taguchi
,
T.
,
Shimada
,
Y.
,
Sakuramoto
,
I.
,
Kawano
,
S.
, and
Kawai
,
S.
,
2001
, “
Gray Matter of the Bovine Cervical Spinal Cord Is Mechanically More Rigid and Fragile Than the White Matter
,”
J. Neurotrauma
,
18
(
3
), pp.
361
367
.10.1089/08977150151071053
21.
Ozawa
,
H.
,
Matsumoto
,
T.
,
Ohashi
,
T.
,
Sato
,
M.
, and
Kokubun
,
S.
,
2004
, “
Mechanical Properties and Function of the Spinal Pia Mater
,”
J. Neurosurg. Spine
,
1
(
1
), pp.
122
127
.10.3171/spi.2004.1.1.0122
22.
Mazuchowski
,
E. L.
, and
Thibault
,
L. E.
,
2003
, “
Biomechanical Properties of the Human Spinal Cord and Pia Mater
,”
ASME Summer Bioengineering Conference
, Key Biscayne, FL, June 25–29, pp.
1205
1206
.https://pdfs.semanticscholar.org/7c1d/618355286b07acad48ae184f75bc07c743cb.pdf
23.
Oakland
,
R. J.
,
Hall
,
R. M.
,
Wilcox
,
R. K.
, and
Barton
,
D. C.
,
2006
, “
The Biomechanical Response of Spinal Cord Tissue to Uniaxial Loading
,”
Proc. Inst. Mech. Eng., Part H
,
220
(
4
), pp.
489
492
.10.1243/09544119JEIM135
24.
Sparrey
,
C. J.
,
Manley
,
G. T.
, and
Keaveny
,
T. M.
,
2009
, “
Effects of White, Grey, and Pia Mater Properties on Tissue Level Stresses and Strains in the Compressed Spinal Cord
,”
J. Neurotrauma
,
26
(
4
), pp.
585
595
.10.1089/neu.2008.0654
25.
Sparrey
,
C. J.
,
Salegio
,
E. A.
,
Camisa
,
W.
,
Tam
,
H.
,
Beattie
,
M. S.
, and
Bresnahan
,
J. C.
,
2016
, “
Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates
,”
J. Neurotrauma
,
33
(12), pp. 1136–1149.10.1089/neu.2015.3974
26.
Persson
,
C.
,
Summers
,
J.
, and
Hall
,
R. M.
,
2011
, “
The Effect of Cerebrospinal Fluid Thickness on Traumatic Spinal Cord Deformation
,”
J. Appl. Biomech.
,
27
(
4
), pp.
330
335
.10.1123/jab.27.4.330
27.
Hung
,
T. K.
,
Lin
,
H. S.
,
Bunegin
,
L.
, and
Albin
,
M. S.
,
1982
, “
Mechanical and Neurological Response of Cat Spinal Cord Under Static Loading
,”
Surg. Neurol.
,
17
(
3
), pp.
213
217
.10.1016/0090-3019(82)90284-1
28.
Maikos
,
J. T.
,
Qian
,
Z.
,
Metaxas
,
D.
, and
Shreiber
,
D. I.
,
2008
, “
Finite Element Analysis of Spinal Cord Injury in the Rat
,”
J. Neurotrauma
,
25
(
7
), pp.
795
816
.10.1089/neu.2007.0423
29.
Russell
,
C. M.
,
Choo
,
A. M.
,
Tetzlaff
,
W.
,
Chung
,
T. E.
, and
Oxland
,
T. R.
,
2012
, “
Maximum Principal Strain Correlates With Spinal Cord Tissue Damage in Contusion and Dislocation Injuries in the Rat Cervical Spine
,”
J. Neurotrauma
,
29
(
8
), pp.
1574
1585
.10.1089/neu.2011.2225
30.
Jannesar
,
S.
,
Nadler
,
B.
, and
Sparrey
,
C. J.
,
2016
, “
The Transverse Isotropy of Spinal Cord White Matter Under Dynamic Load
,”
ASME J. Biomech. Eng.
,
138
(
9
), p.
091004
.10.1115/1.4034171
31.
Fung
,
Y. C.
,
1981
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
32.
Kato
,
Y.
,
Kanchiku
,
T.
,
Imajo
,
Y.
,
Ichinara
,
K.
,
Kawano
,
S.
,
Hamanama
,
D.
,
Yaji
,
K.
, and
Taguchi
,
T.
,
2009
, “
Flexion Model Simulating Spinal Cord Injury Without Radiographic Abnormality in Patients With Ossification of the Longitudinal Ligament: The Influence of Flexion Speed on the Cervical Spine
,”
J. Spinal Cord Med.
,
32
(
5
), pp.
555
559
.10.1080/10790268.2009.11754557
33.
Kato
,
Y.
,
Kataoka
,
H.
,
Ichihara
,
K.
,
Imajo
,
Y.
,
Kojima
,
T.
,
Kawano
,
S.
,
Hamanaka
,
D.
,
Yaji
,
K.
, and
Taguchi
,
T.
,
2008
, “
Biomechanical Study of Cervical Flexion Myelopathy Using a Three-Dimensional Finite Element Method
,”
J. Neurosurg. Spine
,
8
(
5
), pp.
436
441
.10.3171/SPI/2008/8/5/436
34.
Nishida
,
N.
,
Kato
,
Y.
,
Imajo
,
Y.
,
Kawano
,
S.
, and
Taguchi
,
T.
,
2012
, “
Biomechanical Analysis of Cervical Spondylotic Myelopathy: The Influence of Dynamic Factors and Morphometry of the Spinal Cord
,”
J. Spinal Cord Med.
,
35
(
4
), pp.
256
261
.10.1179/2045772312Y.0000000024
35.
Jin
,
X.
,
2009
, “
Biomechanical Response and Constitutive Modeling of Bovine Pia-Arachnoid Complex
,”
Ph.D. dissertation
, Wayne State University, Detroit, MI.https://search.proquest.com/openview/aeef38bcb113e7b220089aac7ba7b6c9/1?pq-origsite=gscholar&cbl=18750&diss=y
36.
Prevost
,
T. P.
,
Jin
,
G.
,
de Moya
,
M. A.
,
Alam
,
H. B.
,
Suresh
,
S.
, and
Socrate
,
S.
,
2011
, “
Dynamic Mechanical Response of Brain Tissue in Indentation In Vivo, In Situ and In Vitro
,”
Acta Biomater.
,
7
(
12
), pp.
4090
4101
.10.1016/j.actbio.2011.06.032
37.
Garo
,
A.
,
Hrapko
,
M.
,
van Dommelen
,
J. A. W.
, and
Peters
,
G. W. M.
,
2007
, “
Towards a Reliable Characterisation of the Mechanical Behaviour of Brain Tissue: The Effects of Post-Mortem Time and Sample Preparation
,”
Biorheology
,
44
(
1
), pp.
51
58
.https://content.iospress.com/download/biorheology/bir446?id=biorheology%2Fbir446
38.
Fountoulakis
,
M.
,
Hardmeier
,
R.
,
Höger
,
H.
, and
Lubec
,
G.
,
2001
, “
Postmortem Changes in the Level of Brain Proteins
,”
Exp. Neurol.
,
167
(
1
), pp.
86
94
.10.1006/exnr.2000.7529
39.
Ramo
,
N. L.
,
Puttlitz
,
C. M.
, and
Troyer
,
K. L.
,
2018
, “
The Development and Validation of a Numerical Integration Method for Non-Linear Viscoelastic Modeling
,”
PLoS One
,
13
(
1
), p.
e0190137
.10.1371/journal.pone.0190137
40.
Pipkin
,
A. C.
, and
Rogers
,
T. G.
,
1968
, “
A Non-Linear Integral Representation for Viscoelastic Behaviour
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
59
72
.10.1016/0022-5096(68)90016-1
41.
Smart
,
J.
, and
Williams
,
J. G.
,
1972
, “
A Comparison of Single-Integral Non-Linear Viscoelasticity Theories
,”
J. Mech. Phys. Solids
,
20
(
5
), pp.
313
324
.10.1016/0022-5096(72)90027-0
42.
Lakes
,
R. S.
, and
Vanderby
,
R.
,
1999
, “
Interrelation of Creep and Relaxation: A Modeling Approach for Ligaments
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
612
615
.10.1115/1.2800861
43.
Fung
,
Y. C.
,
1972
,
Strain History Relations of Soft Tissues in Simple Elongation
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
44.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. A
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
45.
Lucas
,
S. R.
,
Bass
,
C. R.
,
Crandall
,
J. R.
,
Kent
,
R. W.
,
Shen
,
F. H.
, and
Salzar
,
R. S.
,
2009
, “
Viscoelastic and Failure Properties of Spine Ligament Collagen Fascicles
,”
Biomech. Model. Mechanobiol.
,
8
(
6
), pp.
487
498
.10.1007/s10237-009-0152-7
46.
Troyer
,
K. L.
,
Estep
,
D. J.
, and
Puttlitz
,
C. M.
,
2012
, “
Viscoelastic Effects During Loading Play an Integral Role in Soft Tissue Mechanics
,”
Acta Biomater.
,
8
(
1
), pp.
234
243
.10.1016/j.actbio.2011.07.035
47.
Troyer
,
K. L.
, and
Puttlitz
,
C. M.
,
2012
, “
Nonlinear Viscoelasticty Plays an Essential Role in the Functional Behavior of Spinal Ligaments
,”
J. Biomech.
,
45
(
4
), pp.
684
691
.10.1016/j.jbiomech.2011.12.009
48.
Tunturi
,
A. R.
,
1978
, “
Elasticity of the Spinal Cord, Pia, and Denticulate Ligament in the Dog
,”
J. Neurosurg.
,
48
(
6
), pp.
975
979
.10.3171/jns.1978.48.6.0975
49.
Georgeu
,
G. A.
,
Walbeehm
,
E. T.
,
Tillett
,
R.
,
Afoke
,
A.
,
Brown
,
R. A.
, and
Phillips
,
J. B.
,
2005
, “
Investigating the Mechanical Shear-Plane Between Core and Sheath Elements of Peripheral Nerves
,”
Cell Tissue Res.
,
320
(
2
), pp.
229
234
.10.1007/s00441-004-1031-2
50.
Walbeehm
,
E. T.
,
Afoke
,
A.
,
De Wit
,
T.
,
Holman
,
F.
,
Hovius
,
S. E. R.
, and
Brown
,
R. A.
,
2004
, “
Mechanical Functioning of Peripheral Nerves: Linkage With the ‘Mushrooming’ Effect
,”
Cell Tissue Res.
,
316
(
1
), pp.
115
121
.10.1007/s00441-004-0867-9
51.
Bain
,
A. C.
, and
Meaney
,
D. F.
,
2000
, “
Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
615
622
.10.1115/1.1324667
52.
Panjabi
,
M. M.
,
Cholewicki
,
J.
,
Nibu
,
K.
,
Babat
,
L. B.
, and
Dvorak
,
J.
,
1998
, “
Simulation of Whiplash Trauma Using Whole Cervical Spine Specimens
,”
Spine
,
23
(
1
), pp.
17
24
.10.1097/00007632-199801010-00005
53.
McKenzie
,
J. A.
, and
Williams
,
J. F.
,
1971
, “
The Dynamic Behaviour of the Head and Cervical Spine During ‘Whiplash
,”
J. Biomech.
,
4
(
6
), pp.
477
490
.10.1016/0021-9290(71)90038-8
54.
Bartlett
,
R. D.
,
Choi
,
D.
, and
Phillips
,
J. B.
,
2016
, “
Biomechanical Properties of the Spinal Cord: Implications for Tissue Engineering and Clinical Translation
,”
Regener. Med.
,
11
(
7
), pp.
659
673
.10.2217/rme-2016-0065
You do not currently have access to this content.