Abstract

The Fontan procedure is a successful palliation for single ventricle defect. Yet, a number of complications still occur in Fontan patients due to abnormal blood flow dynamics, necessitating improved flow analysis and treatment methods. Phase-contrast magnetic resonance imaging (MRI) has emerged as a suitable method for such flow analysis. However, limitations on altering physiological blood flow conditions in the patient while in the MRI bore inhibit experimental investigation of a variety of factors that contribute to impaired cardiovascular health in these patients. Furthermore, resolution and flow regime limitations in phase contrast (PC) MRI pose a challenge for accurate and consistent flow characterization. In this study, patient-specific physical models were created based on nine Fontan geometries and MRI experiments mimicking low- and high-flow conditions, as well as steady and pulsatile flow, were conducted. Additionally, a particle image velocimetry (PIV)-compatible Fontan model was created and flow was analyzed with PIV, arterial spin labeling (ASL), and four-dimensional (4D) flow MRI. Differences, though nonstatistically significant, were observed between flow conditions and between patient-specific models. Large between-model variation supported the need for further improvement for patient-specific modeling on each unique Fontan anatomical configuration. Furthermore, high-resolution PIV and flow-tracking ASL data provided flow information that was not obtainable with 4D flow MRI alone.

References

1.
Collins
,
R. T.
,
Doshi
,
P.
,
Onukwube
,
J.
,
Fram
,
R. Y.
, and
Robbins
,
J. M.
,
2016
, “
Risk Factors for Increased Hospital Resource Utilization and in-Hospital Mortality in Adults With Single Ventricle Congenital Heart Disease
,”
Am. J. Cardiol.
,
118
(
3
), pp.
453
462
.10.1016/j.amjcard.2016.05.020
2.
Khairy
,
P.
,
Fernandes
,
S. M.
,
Mayer
,
J. E.
,
Triedman
,
J. K.
,
Walsh
,
E. P.
,
Lock
,
J. E.
, and
Landzberg
,
M. J.
,
2008
, “
Long-Term Survival, Modes of Death, and Predictors of Mortality in Patients With Fontan Surgery
,”
Circulation
,
117
(
1
), pp.
85
92
.10.1161/CIRCULATIONAHA.107.738559
3.
Lardo
,
A. C.
,
Webber
,
S. A.
,
Friehs
,
I.
,
del Nido
,
P. J.
, and
Cape
,
E. G.
,
1999
, “
Fluid Dynamic Comparison of Intra-Atrial and Extracardiac Total Cavopulmonary Connections
,”
J. Thorac. Cardiovasc. Surg.
,
117
(
4
), pp.
697
704
.10.1016/S0022-5223(99)70289-8
4.
Bächler
,
P.
,
Valverde
,
I.
,
Pinochet
,
N.
,
Nordmeyer
,
S.
,
Kuehne
,
T.
,
Crelier
,
G.
,
Tejos
,
C.
,
Irarrazaval
,
P.
,
Beerbaum
,
P.
, and
Uribe
,
S.
,
2013
, “
Caval Blood Flow Distribution in Patients With Fontan Circulation: Quantification by Using Particle Traces From 4D Flow MR Imaging
,”
Radiology
,
267
(
1
), pp.
67
75
.10.1148/radiol.12120778
5.
Markl
,
M.
,
Geiger
,
J.
,
Kilner
,
P. J.
,
Föll
,
D.
,
Stiller
,
B.
,
Beyersdorf
,
F.
,
Arnold
,
R.
, and
Frydrychowicz
,
A.
,
2011
, “
Time-Resolved Three-Dimensional Magnetic Resonance Velocity Mapping of Cardiovascular Flow Paths in Volunteers and Patients With Fontan Circulation
,”
Eur. J. Cardiothorac. Surg.
,
39
(
2
), pp.
206
212
.10.1016/j.ejcts.2010.05.026
6.
Long
,
C. C.
,
Hsu
,
M. C.
,
Bazilevs
,
Y.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2012
, “
Fluid-Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties
,”
Int. J. Numer. Method Biomed. Eng.
,
28
(
5
), pp.
513
527
.10.1002/cnm.1485
7.
Sundareswaran
,
K. S.
,
Haggerty
,
C. M.
,
de Zélicourt
,
D.
,
Dasi
,
L. P.
,
Pekkan
,
K.
,
Frakes
,
D. H.
,
Powell
,
A. J.
,
Kanter
,
K. R.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2012
, “
Visualization of Flow Structures in Fontan Patients Using 3-Dimensional Phase Contrast Magnetic Resonance Imaging
,”
J. Thorac. Cardiovasc. Surg.
,
143
(
5
), pp.
1108
1116
.10.1016/j.jtcvs.2011.09.067
8.
Haggerty
,
C. M.
,
Restrepo
,
M.
,
Tang
,
E.
,
de Zélicourt
,
D. A.
,
Sundareswaran
,
K. S.
,
Mirabella
,
L.
,
Bethel
,
J.
,
Whitehead
,
K. K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2014
, “
Fontan Hemodynamics From 100 Patient-Specific Cardiac Magnetic Resonance Studies: A Computational Fluid Dynamics Analysis
,”
J. Thorac. Cardiovasc. Surg.
,
148
(
4
), pp.
1481
1489
.10.1016/j.jtcvs.2013.11.060
9.
Zellers
,
T. M.
,
Driscoll
,
D. J.
,
Mottram
,
C. D.
,
Puga
,
F. J.
,
Schaff
,
H. V.
, and
Danielson
,
G. K.
,
1989
, “
Exercise Tolerance and Cardiorespiratory Response to Exercise Before and After the Fontan Operation
,”
Mayo Clin. Proc.
,
64
(
12
), pp.
1489
1497
.10.1016/S0025-6196(12)65704-8
10.
Tang
,
E.
,
Wei
,
Z. A.
,
Whitehead
,
K. K.
,
Khiabani
,
R. H.
,
Restrepo
,
M.
,
Mirabella
,
L.
,
Bethel
,
J.
,
Paridon
,
S. M.
,
Marino
,
B. S.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2017
, “
Effect of Fontan Geometry on Exercise Haemodynamics and Its Potential Implications
,”
Heart
,
103
(
22
), pp.
1806
1812
.10.1136/heartjnl-2016-310855
11.
Banks
,
L.
,
Rosenthal
,
S.
,
Manlhiot
,
C.
,
Fan
,
C. S.
,
McKillop
,
A.
,
Longmuir
,
P. E.
, and
McCrindle
,
B. W.
,
2017
, “
Exercise Capacity and Self-Efficacy Are Associated With Moderate-to-Vigorous Intensity Physical Activity in Children With Congenital Heart Disease
,”
Pediatr. Cardiol.
,
38
(
6
), pp.
1206
1214
.10.1007/s00246-017-1645-2
12.
Troutman
,
W. B.
,
Barstow
,
T. J.
,
Galindo
,
A. J.
, and
Cooper
,
D. M.
,
1998
, “
Abnormal Dynamic Cardiorespiratory Responses to Exercise in Pediatric Patients After Fontan Procedure
,”
J. Am. Coll. Cardiol.
,
31
(
3
), pp.
668
673
.10.1016/S0735-1097(97)00545-7
13.
Ciliberti
,
P.
,
Schulze-Neick
,
I.
, and
Giardini
,
A.
,
2012
, “
Modulation of Pulmonary Vascular Resistance as a Target for Therapeutic Interventions in Fontan Patients: Focus on Phosphodiesterase Inhibitors
,”
Future Cardiol.
,
8
(
2
), pp.
271
284
.10.2217/fca.12.16
14.
Cunningham
,
J. W.
,
Nathan
,
A. S.
,
Rhodes
,
J.
,
Shafer
,
K.
,
Landzberg
,
M. J.
, and
Opotowsky
,
A. R.
,
2017
, “
Decline in Peak Oxygen Consumption Over Time Predicts Death or Transplantation in Adults With a Fontan Circulation
,”
Am. Heart J.
,
189
, pp.
184
192
.10.1016/j.ahj.2017.04.009
15.
Latus
,
H.
,
Lederle
,
A.
,
Khalil
,
M.
,
Kerst
,
G.
,
Schranz
,
D.
, and
Apitz
,
C.
,
2019
, “
Evaluation of Pulmonary Endothelial Function in Fontan Patients
,”
J. Thorac. Cardiovasc. Surg.
, 158(2), pp. 523–531.e1.10.1016/j.jtcvs.2018.11.144
16.
Henaine
,
R.
,
Vergnat
,
M.
,
Bacha
,
E. A.
,
Baudet
,
B.
,
Lambert
,
V.
,
Belli
,
E.
, and
Serraf
,
A.
,
2013
, “
Effects of Lack of Pulsatility on Pulmonary Endothelial Function in the Fontan Circulation
,”
J. Thorac. Cardiovasc. Surg.
,
146
(
3
), pp.
522
529
.10.1016/j.jtcvs.2012.11.031
17.
Pike
,
N. A.
,
Vricella
,
L. A.
,
Feinstein
,
J. A.
,
Black
,
M. D.
, and
Reitz
,
B. A.
,
2004
, “
Regression of Severe Pulmonary Arteriovenous Malformations After Fontan Revision and “Hepatic Factor” Rerouting
,”
Ann. Thorac. Surg.
,
78
(
2
), pp.
697
699
.10.1016/j.athoracsur.2004.02.003
18.
Wu
,
I. H.
, and
Nguyen
,
K. H.
,
2006
, “
Redirection of Hepatic Drainage for Treatment of Pulmonary Arteriovenous Malformations Following the Fontan Procedure
,”
Pediatr. Cardiol.
,
27
(
4
), pp.
519
522
.10.1007/s00246-006-1261-z
19.
Kutty
,
S.
,
Rathod
,
R. H.
,
Danford
,
D. A.
, and
Celermajer
,
D. S.
,
2016
, “
Role of Imaging in the Evaluation of Single Ventricle With the Fontan Palliation
,”
Heart
,
102
(
3
), pp.
174
183
.10.1136/heartjnl-2015-308298
20.
Jarvis
,
K.
,
Schnell
,
S.
,
Barker
,
A. J.
,
Garcia
,
J.
,
Lorenz
,
R.
,
Rose
,
M.
,
Chowdhary
,
V.
,
Carr
,
J.
,
Robinson
,
J. D.
,
Rigsby
,
C. K.
, and
Markl
,
M.
,
2016
, “
Evaluation of Blood Flow Distribution Asymmetry and Vascular Geometry in Patients With Fontan Circulation Using 4-D Flow MRI
,”
Pediatr. Radiol.
,
46
(
11
), pp.
1507
1519
.10.1007/s00247-016-3654-3
21.
Rutkowski
,
D. R.
,
Barton
,
G.
,
François
,
C. J.
,
Bartlett
,
H. L.
,
Anagnostopoulos
,
P. V.
, and
Roldán-Alzate
,
A.
,
2019
, “
Analysis of Cavopulmonary and Cardiac Flow Characteristics in Fontan Patients: Comparison With Healthy Volunteers
,”
J. Magn. Reson. Imaging
, 49(6), pp.
1786
1799
.10.1002/jmri.26583
22.
Tree
,
M.
,
Wei
,
Z. A.
,
Trusty
,
P. M.
,
Raghav
,
V.
,
Fogel
,
M.
,
Maher
,
K.
, and
Yoganathan
,
A.
,
2018
, “
Using a Novel In Vitro Fontan Model and Condition-Specific Real-Time MRI Data to Examine Hemodynamic Effects of Respiration and Exercise
,”
Ann. Biomed. Eng.
,
46
(
1
), pp.
135
147
.10.1007/s10439-017-1943-0
23.
Medero
,
R.
,
Hoffman
,
C.
, and
Roldán-Alzate
,
A.
,
2018
, “
Comparison of 4D Flow MRI and Particle Image Velocimetry Using an In Vitro Carotid Bifurcation Model
,”
Ann. Biomed. Eng.
,
46
(
12
), pp.
2112
2122
.10.1007/s10439-018-02109-9
24.
Ferré
,
J. C.
,
Bannier
,
E.
,
Raoult
,
H.
,
Mineur
,
G.
,
Carsin-Nicol
,
B.
, and
Gauvrit
,
J. Y.
,
2013
, “
Arterial Spin Labeling (ASL) Perfusion: Techniques and Clinical Use
,”
Diagn. Interv. Imaging
,
94
(
12
), pp.
1211
1223
.10.1016/j.diii.2013.06.010
25.
Petcharunpaisan
,
S.
,
Ramalho
,
J.
, and
Castillo
,
M.
,
2010
, “
Arterial Spin Labeling in Neuroimaging
,”
World J. Radiol.
,
2
(
10
), pp.
384
398
.10.4329/wjr.v2.i10.384
26.
Wu
,
H.
,
Block
,
W. F.
,
Turski
,
P. A.
,
Mistretta
,
C. A.
,
Rusinak
,
D. J.
,
Wu
,
Y.
, and
Johnson
,
K. M.
,
2014
, “
Noncontrast Dynamic 3D Intracranial MR Angiography Using Pseudo-Continuous Arterial Spin Labeling (PCASL) and Accelerated 3D Radial Acquisition
,”
J. Magn. Reson. Imaging
,
39
(
5
), pp.
1320
1326
.10.1002/jmri.24279
27.
Johnson
,
K. M.
,
Lum
,
D. P.
,
Turski
,
P. A.
,
Block
,
W. F.
,
Mistretta
,
C. A.
, and
Wieben
,
O.
,
2008
, “
Improved 3D Phase Contrast MRI With Off-Resonance Corrected Dual Echo VIPR
,”
Magn. Reson. Med.
,
60
(
6
), pp.
1329
1336
.10.1002/mrm.21763
28.
Pedersen
,
E. M.
,
Stenbøg
,
E. V.
,
Fründ
,
T.
,
Houlind
,
K.
,
Kromann
,
O.
,
Sørensen
,
K. E.
,
Emmertsen
,
K.
, and
Hjortdal
,
V. E.
,
2002
, “
Flow During Exercise in the Total Cavopulmonary Connection Measured by Magnetic Resonance Velocity Mapping
,”
Heart
,
87
(
6
), pp.
554
558
.10.1136/heart.87.6.554
29.
He
,
X.
, and
Ku
,
D. N.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
30.
Rutkowski
,
D. R.
,
Medero
,
R.
,
Garcia
,
F. J.
, and
Roldán-Alzate
,
A.
,
2019
, “
MRI-Based Modeling of Spleno-Mesenteric Confluence Flow
,”
J. Biomech.
,
88
, pp.
95
103
.10.1016/j.jbiomech.2019.03.025
You do not currently have access to this content.