The phasic contractions of collecting lymphatic vessels are reduced in strength and occur at diminished frequency when a favorable pressure difference and the resulting antegrade flow create large fluid shear stresses at the luminal surface. This paper describes a minimal phenomenological model of this mechanism that is applied to a previously validated numerical model of a phasically contracting lymphangion. The parameters of the inhibition model are quantitatively matched to observations in isolated segments of rat lymphatic vessel, first for mesenteric lymphatics then for thoracic duct, and outcomes from the numerical model are then qualitatively compared with recent observations in isolated segments of rat thoracic duct.
Issue Section:
Research Papers
References
1.
McHale
, N. G.
, 1993
, “Nervous Control of the Lymphatic System
,” Vasc. Med. Rev.
, 4
, pp. 307
–319
.2.
Mignini
, F.
, Sabbatini
, M.
, Coppola
, L.
, and Cavallotti
, C.
, 2012
, “Analysis of Nerve Supply Pattern in Human Lymphatic Vessels of Young and Old Men
,” Lymphatic Res. Biol.
, 10
(4
), pp. 189
–197
.3.
Telinius
, N.
, Baandrup
, U.
, Rumessen
, J.
, Pilegaard
, H.
, Hjortdal
, V.
, Aalkjaer
, C.
, and Briggs Boedtkjer
, D.
, 2014
, “The Human Thoracic Duct Is Functionally Innervated by Adrenergic Nerves
,” Am. J. Physiol. - Heart Circ. Physiol.
, 306
(2
), pp. H206
–H213
.4.
Zawieja
, D. C.
, 2009
, “Contractile Physiology of Lymphatics
,” Lymphatic Res. Biol.
, 7
(2
), pp. 87
–96
.5.
Davis
, M. J.
, Davis
, A. M.
, Ku
, C. W.
, and Gashev
, A. A.
, 2009
, “Myogenic Constriction and Dilation of Isolated Lymphatic Vessels
,” Am. J. Physiol. - Heart Circ. Physiol.
, 296
(2
), pp. H293
–H302
.6.
Davis
, M. J.
, Davis
, A. M.
, Lane
, M. M.
, Ku
, C. W.
, and Gashev
, A. A.
, 2009
, “Rate-Sensitive Contractile Responses of Lymphatic Vessels to Circumferential Stretch
,” J. Physiol.
, 587
(1
), pp. 165
–182
.7.
Gashev
, A. A.
, Davis
, M. J.
, and Zawieja
, D. C.
, 2002
, “Inhibition of the Active Lymph Pump by Flow in Rat Mesenteric Lymphatics and Thoracic Duct
,” J. Physiol.
, 540
(3
), pp. 1023
–1037
.8.
Gasheva
, O. Y.
, Zawieja
, D. C.
, and Gashev
, A. A.
, 2006
, “Contraction-Initiated NO-Dependent Lymphatic Relaxation: A Self-Regulatory Mechanism in Rat Thoracic Duct
,” J. Physiol.
, 575
(3
), pp. 821
–832
.9.
Gasheva
, O. Y.
, Gashev
, A. A.
, and Zawieja
, D. C.
, 2013
, “Cyclic Guanosine Monophosphate and the Dependent Protein Kinase Regulate Lymphatic Contractility in Rat Thoracic Duct
,” J. Physiol.
, 591
(18
), pp. 4549
–4565
.10.
Nizamutdinova
, I. T.
, Maejima
, D.
, Nagai
, T.
, Bridenbaugh
, E.
, Thangaswamy
, S.
, Chatterjee
, V.
, Meininger
, C. J.
, and Gashev
, A. A.
, 2014
, “Involvement of Histamine in Endothelium-Dependent Relaxation of Mesenteric Lymphatic Vessels
,” Microcirculation
, 21
(7
), pp. 640
–648
.11.
Caulk
, A. W.
, Dixon
, J. B.
, and Gleason
, R. L.
, Jr., 2016
, “A Lumped Parameter Model of Mechanically Mediated Acute and Long-Term Adaptations of Contractility and Geometry in Lymphatics for Characterization of Lymphedema
,” Biomech. Model. Mechanobiol.
, 15
(6
), pp. 1601
–1618
.12.
Kornuta
, J. A.
, Nepiyushchikh
, Z. V.
, Gasheva
, O. Y.
, Mukherjee
, A.
, Zawieja
, D. C.
, and Dixon
, J. B.
, 2015
, “Effects of Dynamic Shear and Transmural Pressure on Wall Shear Stress Sensitivity in Collecting Lymphatic Vessels
,” Am. J. Physiol. - Regul., Integr. Comp. Physiol.
, 309
(9
), pp. R1122
–R1134
.13.
Contarino
, C.
, and Toro
, E. F.
, 2018
, “A One-Dimensional Mathematical Model of Collecting Lymphatics Coupled With an Electro-Fluid-Mechanical Contraction Model and Valve Dynamics
,” Biomech. Model. Mechanobiol.
, 17
(6
), pp. 1687
–1714
.14.
Kunert
, C.
, Baish
, J. W.
, Liao
, S.
, Padera
, T. P.
, and Munn
, L. L.
, 2015
, “Mechanobiological Oscillators Control Lymph Flow
,” Proc. Natl. Acad. Sci. U. S. A.
, 112
(35
), pp. 10938
–10943
.15.
Baish
, J. W.
, Kunert
, C.
, Padera
, T. P.
, and Munn
, L. L.
, 2016
, “Synchronization and Random Triggering of Lymphatic Vessel Contractions
,” PLoS Comput. Biol.
, 12
(12
), p. e1005231
.16.
Davis
, M. J.
, 2016
, “Letter—Is Nitric Oxide Important for the Diastolic Phase of the Lymphatic Contraction/Relaxation Cycle?
,” PNAS
, 113
(2
), p. E105
.17.
Kunert
, C.
, Baish
, J. W.
, Liao
, S.
, Padera
, T. P.
, and Munn
, L. L.
, 2016
, “Letter—Reply to Davis: Nitric Oxide Regulates Lymphatic Contractions
,” PNAS
, 113
(2
), p. E106
.18.
Bertram
, C. D.
, Macaskill
, C.
, Davis
, M. J.
, and Moore
, J. E.
, Jr., 2014
, “Development of a Model of a Multi-Lymphangion Lymphatic Vessel Incorporating Realistic and Measured Parameter Values
,” Biomech. Model. Mechanobiol.
, 13
(2
), pp. 401
–416
.19.
Bertram
, C. D.
, Macaskill
, C.
, Davis
, M. J.
, and Moore
, J. E.
, Jr., 2016
, “Consequences of Intravascular Lymphatic Valve Properties: A Study of Contraction Timing in a Multi-Lymphangion Model
,” Am. J. Physiol. - Heart Circ. Physiol.
, 310
(7
), pp. H847
–H860
.20.
Bertram
, C. D.
, Macaskill
, C.
, Davis
, M. J.
, and Moore
, J. E.
, Jr., 2017
, “Valve-Related Modes of Pump Failure in Collecting Lymphatics: Numerical and Experimental Investigation
,” Biomech. Model. Mechanobiol.
, 16
(6
), pp. 1987
–2003
.21.
Bertram
, C. D.
, Macaskill
, C.
, Davis
, M. J.
, and Moore
, J. E.
, Jr., 2018
, “Contraction of Collecting Lymphatics: Organization of Pressure-Dependent Rate for Multiple Lymphangions
,” Biomech. Model. Mechanobiol.
, 17
(5
), pp. 1513
–1532
.22.
Gashev
, A. A.
, Davis
, M. J.
, Delp
, M. D.
, and Zawieja
, D. C.
, 2004
, “Regional Variations of Contractile Activity in Isolated Rat Lymphatics
,” Microcirculation
, 11
(6
), pp. 477
–492
.23.
Gashev
, A. A.
, Zhang
, R.-Z.
, Muthuchamy
, M.
, Zawieja
, D. C.
, and Davis
, M. J.
, 2012
, “Regional Heterogeneity of Length-Tension Relationships in Rat Lymph Vessels
,” Lymphatic Res. Biol.
, 10
(1
), pp. 14
–19
.24.
Caulk
, A. W.
, Nepiyushchikh
, Z. V.
, Shaw
, R.
, Dixon
, J. B.
, and Gleason
, R. L.
, Jr., 2015
, “Quantification of the Passive and Active Biaxial Mechanical Behaviour and Microstructural Organization of Rat Thoracic Ducts
,” J. R. Soc. - Interface
, 12
, pp. 1
–12
.25.
Davis
, M. J.
, Rahbar
, E.
, Gashev
, A. A.
, Zawieja
, D. C.
, and Moore
, J. E.
, Jr., 2011
, “Determinants of Valve Gating in Collecting Lymphatic Vessels From Rat Mesentery
,” Am. J. Physiol. - Heart Circ. Physiol.
, 301
(1
), pp. H48
–H60
.26.
Bertram
, C. D.
, Macaskill
, C.
, and Moore
, J. E.
, Jr., 2016
, “Pump Function Curve Shape for a Model Lymphatic Vessel
,” Med. Eng. Phys.
, 38
(7
), pp. 656
–663
.27.
Jamalian
, S.
, Jafarnejad
, M.
, Zawieja
, S. D.
, Bertram
, C. D.
, Gashev
, A. A.
, Zawieja
, D. C.
, Davis
, M. J.
, and Moore
, J. E.
, Jr., 2017
, “Demonstration and Analysis of the Suction Effect for Pumping Lymph From Tissue Beds at Subatmospheric Pressure
,” Sci. Rep.
, 7
, p. 12080
.28.
Mukherjee
, A.
, Hooks
, J.
, Nepiyushchikh
, Z.
, and Dixon
, J. B.
, 2019
, “Entrainment of Lymphatic Contraction to Oscillatory Flow
,” Sci. Rep.
, 9
(1
), p. 5840
.Copyright © 2019 by ASME
You do not currently have access to this content.